2D Fourier Optics Simulator

2D Fourier Optics Simulator

2D Fourier Optics Simulator computes the 2D diffraction pattern of an aperture using the Fourier transform. Enter aperture dimensions \( a, b \) (or diameter for circular), wavelength \( \lambda \), focal length \( f \), and select aperture type (rectangular or circular).

2D Fourier Optics Model

The diffraction pattern is the squared magnitude of the 2D Fourier transform of the aperture function. For a rectangular aperture of size \( a \times b \):

\[ U(u,v) = \frac{ab}{\lambda f} \text{sinc}\left(\frac{a u}{\lambda f}\right) \text{sinc}\left(\frac{b v}{\lambda f}\right), \quad I(u,v) = |U(u,v)|^2 \]

For a circular aperture of diameter \( d \):

\[ U(u,v) = \frac{\pi d^2}{4 \lambda f} \frac{2 J_1\left(\frac{\pi d \sqrt{u^2 + v^2}}{\lambda f}\right)}{\frac{\pi d \sqrt{u^2 + v^2}}{\lambda f}}, \quad I(u,v) = |U(u,v)|^2 \]

Where:

  • \( a, b \): Aperture width and height (mm) (or \( d \) for circular)
  • \( \lambda \): Wavelength (m)
  • \( f \): Focal length (m)
  • \( u, v \): Spatial coordinates in the Fourier plane (m)
  • \( U(u,v) \): Complex amplitude
  • \( I(u,v) \): Intensity
  • \( \text{sinc}(x) = \sin(\pi x)/(\pi x) \)
  • \( J_1 \): First-order Bessel function of the first kind

Related Calculators

  1. Fourier Optics Simulator 1D
  2. Diophantine Equation Solver
  3. Modular Exponentiation Solver
  4. Stokes Flow Simulator
  5. Determinant Calculator
  6. Mid-Point Calculator
  7. More Math Calculators
error: Content is protected !!