google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Quantum Angular Momentum Coupler CalculatorĀ 

Quantum Angular Momentum Coupler Calculator finds total j and m_j values for coupled angular momenta, aiding quantum mechanics and atomic physics studies.

Formulas Used in Quantum Angular Momentum Coupler Calculator

The calculator uses the following formulas for coupling two angular momenta:

Total Angular Momentum Quantum Number:

\\[ j = |j_1 – j_2|, |j_1 – j_2| + 1, \ldots, j_1 + j_2 \\]

Magnetic Quantum Number:

\\[ m_j = -j, -j + 1, \ldots, j – 1, j \\]

Number of States:

\\[ N_j = 2j + 1 \\] \\[ N_{\text{total}} = (2j_1 + 1)(2j_2 + 1) \\]

Where:

  • \\( j_1, j_2 \\): Angular momentum quantum numbers
  • \\( j \\): Total angular momentum quantum number
  • \\( m_j \\): Magnetic quantum number for total angular momentum
  • \\( N_j \\): Number of states for a given \\( j \\)
  • \\( N_{\text{total}} \\): Total number of states

Example Calculations

Example 1: Electron-Electron Spin Coupling (j₁ = 1/2, jā‚‚ = 1/2)

Input: j₁ = 0.5, jā‚‚ = 0.5

\\[ j = |0.5 – 0.5|, \ldots, 0.5 + 0.5 = \{0, 1\} \\] \\[ m_j(j=0) = \{0\}, \quad m_j(j=1) = \{-1, 0, 1\} \\] \\[ N_0 = 2 \cdot 0 + 1 = 1, \quad N_1 = 2 \cdot 1 + 1 = 3 \\] \\[ N_{\text{total}} = (2 \cdot 0.5 + 1)(2 \cdot 0.5 + 1) = 4 \\]

Result: j = {0, 1}, m_j(j=0) = {0}, m_j(j=1) = {-1, 0, 1}, Number of States: {1, 3}, Total States: 4

Example 2: Spin-Orbit Coupling (j₁ = 1/2, jā‚‚ = 1)

Input: j₁ = 0.5, jā‚‚ = 1

\\[ j = |0.5 – 1|, \ldots, 0.5 + 1 = \{0.5, 1.5\} \\] \\[ m_j(j=0.5) = \{-0.5, 0.5\}, \quad m_j(j=1.5) = \{-1.5, -0.5, 0.5, 1.5\} \\] \\[ N_{0.5} = 2 \cdot 0.5 + 1 = 2, \quad N_{1.5} = 2 \cdot 1.5 + 1 = 4 \\] \\[ N_{\text{total}} = (2 \cdot 0.5 + 1)(2 \cdot 1 + 1) = 6 \\]

Result: j = {0.5, 1.5}, m_j(j=0.5) = {-0.5, 0.5}, m_j(j=1.5) = {-1.5, -0.5, 0.5, 1.5}, Number of States: {2, 4}, Total States: 6

Example 3: Higher Spin Coupling (j₁ = 1, jā‚‚ = 1.5)

Input: j₁ = 1, jā‚‚ = 1.5

\\[ j = |1 – 1.5|, \ldots, 1 + 1.5 = \{0.5, 1.5, 2.5\} \\] \\[ m_j(j=0.5) = \{-0.5, 0.5\}, \quad m_j(j=1.5) = \{-1.5, -0.5, 0.5, 1.5\}, \quad m_j(j=2.5) = \{-2.5, -1.5, -0.5, 0.5, 1.5, 2.5\} \\] \\[ N_{0.5} = 2 \cdot 0.5 + 1 = 2, \quad N_{1.5} = 2 \cdot 1.5 + 1 = 4, \quad N_{2.5} = 2 \cdot 2.5 + 1 = 6 \\] \\[ N_{\text{total}} = (2 \cdot 1 + 1)(2 \cdot 1.5 + 1) = 9 \\]

Result: j = {0.5, 1.5, 2.5}, m_j(j=0.5) = {-0.5, 0.5}, m_j(j=1.5) = {-1.5, -0.5, 0.5, 1.5}, m_j(j=2.5) = {-2.5, -1.5, -0.5, 0.5, 1.5, 2.5}, Number of States: {2, 4, 6}, Total States: 9

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators