Knudsen Number Calculator
Knudsen Number Calculator computes the Knudsen number to determine flow regime based on mean free path and length scale.
Formulas Used in Knudsen Number Calculator
The calculator computes the Knudsen number to determine the flow regime:
Knudsen Number:
\\[ Kn = \frac{\lambda}{L} \\]Mean Free Path:
\\[ \lambda = \frac{k_B T}{\sqrt{2} \pi d^2 P} \\]Flow Regime:
- Continuum: \\(Kn < 0.01\\)
- Slip: \\(0.01 \leq Kn < 0.1\\)
- Transitional: \\(0.1 \leq Kn < 10\\)
- Free Molecular: \\(Kn \geq 10\\)
Where:
- \\(Kn\\): Knudsen number (dimensionless)
- \\(\lambda\\): Mean free path (m)
- \\(L\\): Characteristic length (m)
- \\(k_B\\): Boltzmann constant (\\(1.380649 \times 10^{-23} \, \text{J/K}\\))
- \\(T\\): Temperature (K)
- \\(P\\): Pressure (Pa)
- \\(d\\): Molecular diameter (m)
Example Calculation
Example: \\(T = 300 \, \text{K}, P = 101325 \, \text{Pa}, d = 3.7 \times 10^{-10} \, \text{m}, L = 0.001 \, \text{m}\\)
\\[
\lambda = \frac{1.380649 \times 10^{-23} \times 300}{\sqrt{2} \pi (3.7 \times 10^{-10})^2 \times 101325} \approx 6.799 \times 10^{-8} \, \text{m}
\\]
\\[
Kn = \frac{6.799 \times 10^{-8}}{0.001} \approx 6.799 \times 10^{-5}
\\]
Flow Regime: Continuum (\\(Kn < 0.01\\))