Keplerian Orbit Simulator
Keplerian Orbit Simulator models a planet’s elliptical orbit around a star, showing period and motion per Kepler’s laws.
Formulas Used in Keplerian Orbit Simulator
The simulator models an elliptical orbit and computes the orbital period:
Orbital Period (Kepler’s Third Law):
\\[ T = \sqrt{\frac{4\pi^2 a^3}{G M}} \\]Elliptical Orbit:
\\[ x = a \cos(\theta) – a e, \quad y = a \sqrt{1 – e^2} \sin(\theta) \\]Where:
- \\(T\\): Orbital period (years)
- \\(a\\): Semi-major axis (m)
- \\(e\\): Eccentricity (0 ≤ e < 1)
- \\(G\\): Gravitational constant (\\(6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2}\\))
- \\(M\\): Central body mass (kg)
- \\(x, y\\): Coordinates of the planet relative to the focus
- \\(\theta\\): Angle parameter (radians)
Example Calculation
Example: Earth orbiting the Sun (\\(M = 1.989 \times 10^{30} \, \text{kg}, a = 1 \, \text{AU}, e = 0.0167\\))
\\[
T = \sqrt{\frac{4\pi^2 (1.496 \times 10^{11})^3}{6.67430 \times 10^{-11} \times 1.989 \times 10^{30}}} \approx 1 \, \text{year}
\\]