google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Neural Network Loss Function Calculator

Neural Network Loss Function Calculator

Neural Network Loss Function Calculator computes Mean Squared Error (MSE), Mean Absolute Error (MAE), and Cross-Entropy Loss for given predicted and actual values. Enter two comma-separated lists of numbers (e.g., 0.1,0.2,0.3 for predicted and 0,0,1 for actual).

Loss Functions Used

Loss functions measure the difference between predicted and actual values in neural networks. This calculator computes:

Mean Squared Error (MSE):

\\[ MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i – \hat{y}_i)^2 \\]

Mean Absolute Error (MAE):

\\[ MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i – \hat{y}_i| \\]

Cross-Entropy Loss (Binary):

\\[ CE = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 – y_i) \log(1 – \hat{y}_i)] \\]

Where \\( y_i \\) is the actual value, \\( \hat{y}_i \\) is the predicted value, and \\( n \\) is the number of values.

Algorithm Steps:

  1. Input two arrays of numbers (predicted and actual values).
  2. Validate inputs (same length, valid numbers, 0 ≤ predicted ≤ 1 for CE).
  3. Calculate MSE, MAE, and Cross-Entropy Loss.
  4. Display results and visualize errors per sample.

Related Calculators

  1. Quadratic Residue Checker
  2. Diophantine Equation Solver
  3. Modular Exponentiation Solver
  4. Stokes Flow Simulator
  5. Determinant Calculator
  6. Mid-Point Calculator
  7. More Math Calculators