google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Knot Polynomial Calculator

Knot Polynomial Calculator

Knot Polynomial Calculator computes the Alexander polynomial for a torus knot \\( T_{p,q} \\) with presentation \\( \langle x, y \mid x^p = y^q \rangle \\), where \\( p \\) and \\( q \\) are coprime positive integers.

Alexander Polynomial for Torus Knots

The Alexander polynomial for a torus knot \\( T_{p,q} \\) with coprime integers \\( p \\) and \\( q \\) is given by:

\\[ \Delta(T_{p,q}) = \frac{(t^{pq} – 1)(t – 1)}{(t^p – 1)(t^q – 1)} \\]

Where:

  • \\( p, q \\): Coprime positive integers defining the torus knot.
  • \\( t \\): Polynomial variable.
  • \\( \Delta(T_{p,q}) \\): Alexander polynomial of the knot.

This formula is derived using Fox free calculus on the knot group presentation \\( \langle x, y \mid x^p = y^q \rangle \\).

[](https://mathoverflow.net/questions/129717/how-to-compute-the-alexander-polynomial-of-general-torus-knot)
  1. Fourier Optics Simulator 1D
  2. Diophantine Equation Solver
  3. Modular Exponentiation Solver
  4. Stokes Flow Simulator
  5. Determinant Calculator
  6. Mid-Point Calculator
  7. More Math Calculators