3D Haar Wavelet Transform CalculatorĀ
Description
This 3D Haar Wavelet Transform Calculator computes approximation and detail coefficients for a 3D signal, visualizing results for tensor analysis.
Result:
Formulas Used
For a 3D signal s[i,j,k]
with even dimensions NĆMĆP
, the 3D Haar wavelet transform computes coefficients over three dimensions:
- Approximation:
a[i,j,k] = (s[2i,2j,2k] + s[2i,2j,2k+1] + s[2i,2j+1,2k] + s[2i,2j+1,2k+1] + s[2i+1,2j,2k] + s[2i+1,2j,2k+1] + s[2i+1,2j+1,2k] + s[2i+1,2j+1,2k+1]) / ā8
- Detail coefficients (7 types, e.g., HLL):
d_HLL[i,j,k] = (s[2i,2j,2k] - s[2i,2j,2k+1] + s[2i,2j+1,2k] - s[2i,2j+1,2k+1] + s[2i+1,2j,2k] - s[2i+1,2j,2k+1] + s[2i+1,2j+1,2k] - s[2i+1,2j+1,2k+1]) / ā8
Where i = 0, ..., N/2-1
, j = 0, ..., M/2-1
, k = 0, ..., P/2-1
, and ā8
ensures orthogonality.
Examples and Solutions
- Example 1: Input:
[[[1,2],[3,4]],[[5,6],[7,8]]]
Solution: Approximation:[[[4.5962]]]
, Detail (HLL):[[[-1.4142]]]
(other details omitted for brevity) - Example 2: Input:
[[[0,0],[1,1]],[[2,2],[3,3]]]
Solution: Approximation:[[[1.4142]]]
, Detail (HLL):[[[0]]]
- Example 3: Input:
[[[2,2],[2,2]],[[2,2],[2,2]]]
Solution: Approximation:[[[2.8284]]]
, Detail (HLL):[[[0]]]
- Example 4: Input:
[[[1,-1],[2,-2]],[[3,-3],[4,-4]]]
Solution: Approximation:[[[0]]]
, Detail (HLL):[[[2.8284]]]
- Example 5: Input:
[[[5,3],[7,1]],[[2,4],[6,8]]]
Solution: Approximation:[[[4.5962]]]
, Detail (HLL):[[[0]]]