google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

3D Haar Wavelet Transform CalculatorĀ 

Description

This 3D Haar Wavelet Transform Calculator computes approximation and detail coefficients for a 3D signal, visualizing results for tensor analysis.

Result:


        
        
        

Formulas Used

For a 3D signal s[i,j,k] with even dimensions NƗMƗP, the 3D Haar wavelet transform computes coefficients over three dimensions:

  • Approximation: a[i,j,k] = (s[2i,2j,2k] + s[2i,2j,2k+1] + s[2i,2j+1,2k] + s[2i,2j+1,2k+1] + s[2i+1,2j,2k] + s[2i+1,2j,2k+1] + s[2i+1,2j+1,2k] + s[2i+1,2j+1,2k+1]) / √8
  • Detail coefficients (7 types, e.g., HLL): d_HLL[i,j,k] = (s[2i,2j,2k] - s[2i,2j,2k+1] + s[2i,2j+1,2k] - s[2i,2j+1,2k+1] + s[2i+1,2j,2k] - s[2i+1,2j,2k+1] + s[2i+1,2j+1,2k] - s[2i+1,2j+1,2k+1]) / √8

Where i = 0, ..., N/2-1, j = 0, ..., M/2-1, k = 0, ..., P/2-1, and √8 ensures orthogonality.

Examples and Solutions

  • Example 1: Input: [[[1,2],[3,4]],[[5,6],[7,8]]]
    Solution: Approximation: [[[4.5962]]], Detail (HLL): [[[-1.4142]]] (other details omitted for brevity)
  • Example 2: Input: [[[0,0],[1,1]],[[2,2],[3,3]]]
    Solution: Approximation: [[[1.4142]]], Detail (HLL): [[[0]]]
  • Example 3: Input: [[[2,2],[2,2]],[[2,2],[2,2]]]
    Solution: Approximation: [[[2.8284]]], Detail (HLL): [[[0]]]
  • Example 4: Input: [[[1,-1],[2,-2]],[[3,-3],[4,-4]]]
    Solution: Approximation: [[[0]]], Detail (HLL): [[[2.8284]]]
  • Example 5: Input: [[[5,3],[7,1]],[[2,4],[6,8]]]
    Solution: Approximation: [[[4.5962]]], Detail (HLL): [[[0]]]

Related Calculators

  1. Quadratic Residue Checker
  2. Diophantine Equation Solver
  3. Modular Exponentiation Solver
  4. Stokes Flow Simulator
  5. Determinant Calculator
  6. Mid-Point Calculator
  7. More Math Calculators