google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Music Festival Schedule Optimizer

Music Festival Schedule Optimizer creates an optimal schedule for a music festival by assigning bands to stages and time slots to maximize attendee satisfaction based on band popularity and stage capacity, with a detailed breakdown.

Formulas Used in Music Festival Schedule Optimizer

The calculator uses the following formulas to optimize the festival schedule:

Satisfaction Score for Assignment:

\\[ S_{i,j,k} = P_i \cdot C_j \\]

Total Satisfaction:

\\[ S_{\text{total}} = \sum_{i,j,k} S_{i,j,k} \cdot x_{i,j,k} \\]

Constraints:

  • Each band plays at most once: \\( \sum_{j,k} x_{i,j,k} \leq 1 \ \forall i \\)
  • Each stage-time slot has at most one band: \\( \sum_i x_{i,j,k} \leq 1 \ \forall j,k \\)
  • Band availability: \\( x_{i,j,k} = 0 \\) if band \\( i \\) unavailable at slot \\( k \\)

Where:

  • \\( S_{i,j,k} \\): Satisfaction score for band \\( i \\) on stage \\( j \\) at time slot \\( k \\)
  • \\( P_i \\): Popularity score of band \\( i \\) (0 to 100)
  • \\( C_j \\): Capacity of stage \\( j \\) (attendees)
  • \\( x_{i,j,k} \\): Binary variable (1 if band \\( i \\) is assigned to stage \\( j \\) at slot \\( k \\), 0 otherwise)
  • \\( S_{\text{total}} \\): Total satisfaction score

Example Calculations

Example 1: Small Festival

Input: Bands = [BandA,80,1-2,BandB,60,1-2,BandC,40,2], Stages = [MainStage,1000,SmallStage,500], Time Slots = 2

Sort bands by popularity: BandA (80), BandB (60), BandC (40)

Assign BandA to MainStage, slot 1: \\( S = 80 \cdot 1000 = 80,000 \\)

Assign BandB to SmallStage, slot 1: \\( S = 60 \cdot 500 = 30,000 \\)

Assign BandC to MainStage, slot 2: \\( S = 40 \cdot 1000 = 40,000 \\)

\\[ S_{\text{total}} = 80000 + 30000 + 40000 = 150,000 \\]

Result: Schedule = [BandA,MainStage,1; BandB,SmallStage,1; BandC,MainStage,2], Total Satisfaction = 150,000

Example 2: Medium Festival

Input: Bands = [BandA,90,1-3,BandB,70,2-3,BandC,65,1-2,BandD,50,1-3,BandE,30,3], Stages = [MainStage,2000,MediumStage,1000,SmallStage,300], Time Slots = 3

Sort bands: BandA (90), BandB (70), BandC (65), BandD (50), BandE (30)

Assign BandA to MainStage, slot 1: \\( S = 90 \cdot 2000 = 180,000 \\)

Assign BandB to MainStage, slot 2: \\( S = 70 \cdot 2000 = 140,000 \\)

Assign BandC to MediumStage, slot 1: \\( S = 65 \cdot 1000 = 65,000 \\)

Assign BandD to SmallStage, slot 1: \\( S = 50 \cdot 300 = 15,000 \\)

Assign BandE to MainStage, slot 3: \\( S = 30 \cdot 2000 = 60,000 \\)

\\[ S_{\text{total}} = 180000 + 140000 + 65000 + 15000 + 60000 = 460,000 \\]

Result: Schedule = [BandA,MainStage,1; BandB,MainStage,2; BandC,MediumStage,1; BandD,SmallStage,1; BandE,MainStage,3], Total Satisfaction = 460,000

Example 3: Large Festival

Input: Bands = [BandA,95,1-5,BandB,85,2-4,…,BandJ,20,4-5], Stages = [MainStage,5000,Stage2,3000,Stage3,1500,SmallStage,500], Time Slots = 5

Sort bands: BandA (95), BandB (85), …, BandJ (20)

Assign BandA to MainStage, slot 1: \\( S = 95 \cdot 5000 = 475,000 \\)

Assign BandB to MainStage, slot 2: \\( S = 85 \cdot 5000 = 425,000 \\)

Assign BandJ to SmallStage, slot 4: \\( S = 20 \cdot 500 = 10,000 \\)

\\[ S_{\text{total}} \approx 1,900,000 \\]

Result: Total Satisfaction ≈ 1,900,000 (full schedule in output)

Related Calculators

  1. Music Festival Schedule Optimizer
  2. Movie Runtime Pacing Calculator
  3. Virtual Pet Hunger Decay Calculator
  4. Speedrun Time Estimator
  5. Poker Hand Strength Analyzer
  6. Gacha Pull Success Rate Calculator
  7. More Entertainment Calculators