Acoustic Wave Propagator
Acoustic Wave Propagator calculates wavelength and acoustic impedance for sound waves in a medium, with a wavelength-frequency plot.
Acoustic Wave Propagator
The calculator computes basic acoustic wave properties based on the following relations:
Wavelength:
\\[ \lambda = \frac{c}{f} \\]Acoustic Impedance:
\\[ z = \rho c \\]Where:
- \\(\lambda\\): Wavelength (m)
- \\(c\\): Speed of sound (m/s)
- \\(f\\): Frequency (Hz)
- \\(\rho\\): Medium density (kg/m³)
- \\(z\\): Acoustic impedance (kg/(m²·s))
Acoustic Wave Propagator
Acoustic Wave Propagator (Example 1)
Input: \\(f = 1000 \, \text{Hz}, c = 343 \, \text{m/s}, \rho = 1.225 \, \text{kg/m}^3\\)
\\[
\lambda = \frac{343}{1000} \approx 0.343 \, \text{m}
\\]
\\[
z = 1.225 \times 343 \approx 420.075 \, \text{kg/(m²·s)}
\\]
Acoustic Wave Propagator (Example 2)
Input: \\(f = 500 \, \text{Hz}, c = 1480 \, \text{m/s}, \rho = 1000 \, \text{kg/m}^3\\)
\\[
\lambda = \frac{1480}{500} \approx 2.960 \, \text{m}
\\]
\\[
z = 1000 \times 1480 \approx 1480000 \, \text{kg/(m²·s)}
\\]
Acoustic Wave Propagator (Example 3)
Input: \\(f = 2000 \, \text{Hz}, c = 1500 \, \text{m/s}, \rho = 1025 \, \text{kg/m}^3\\)
\\[
\lambda = \frac{1500}{2000} \approx 0.750 \, \text{m}
\\]
\\[
z = 1025 \times 1500 \approx 1537500 \, \text{kg/(m²·s)}
\\]
Acoustic Wave Propagator (Example 4)
Input: \\(f = 50 \, \text{Hz}, c = 340 \, \text{m/s}, \rho = 1.2 \, \text{kg/m}^3\\)
\\[
\lambda = \frac{340}{50} \approx 6.800 \, \text{m}
\\]
\\[
z = 1.2 \times 340 \approx 408.000 \, \text{kg/(m²·s)}
\\]