google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Bloch Sphere Visualizer

Bloch Sphere Visualizer plots a qubit state on a 3D sphere using θ and φ angles, computing Bloch coordinates and state components for quantum computing studies.

Formulas Used in Bloch Sphere Visualizer

The visualizer uses the following formulas for a single qubit state:

Qubit State:

\\[ |\psi\rangle = \cos\left(\frac{\theta}{2}\right) |0\rangle + e^{i\phi} \sin\left(\frac{\theta}{2}\right) |1\rangle \\]

Bloch Vector Coordinates:

\\[ x = \sin\theta \cos\phi, \quad y = \sin\theta \sin\phi, \quad z = \cos\theta \\]

State Components:

\\[ \alpha = \cos\left(\frac{\theta}{2}\right), \quad \beta = e^{i\phi} \sin\left(\frac{\theta}{2}\right) \\] \\[ \beta_{\text{re}} = \sin\left(\frac{\theta}{2}\right) \cos\phi, \quad \beta_{\text{im}} = \sin\left(\frac{\theta}{2}\right) \sin\phi \\]

Where:

  • \\( \theta \\): Polar angle (0 to \\( \pi \\))
  • \\( \phi \\): Azimuthal angle (0 to \\( 2\pi \\))
  • \\( \alpha \\): Coefficient of \\( |0\rangle \\)
  • \\( \beta \\): Coefficient of \\( |1\rangle \\)
  • \\( x, y, z \\): Bloch sphere coordinates

Example Calculations

Example 1: Superposition State (θ = 90°, φ = 0°)

Input: θ = 90°, φ = 0°

\\[ |\psi\rangle = \cos\left(\frac{90^\circ}{2}\right) |0\rangle + e^{i \cdot 0^\circ} \sin\left(\frac{90^\circ}{2}\right) |1\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \\] \\[ x = \sin 90^\circ \cos 0^\circ = 1, \quad y = \sin 90^\circ \sin 0^\circ = 0, \quad z = \cos 90^\circ = 0 \\] \\[ \alpha = \cos\left(\frac{90^\circ}{2}\right) \approx 0.707, \quad \beta_{\text{re}} = \sin\left(\frac{90^\circ}{2}\right) \cos 0^\circ \approx 0.707, \quad \beta_{\text{im}} = \sin\left(\frac{90^\circ}{2}\right) \sin 0^\circ = 0 \\]

Result: Bloch Coordinates: (1, 0, 0), State: [0.707, 0.707 + 0i]

Example 2: Spin-Up State (θ = 0°, φ = 0°)

Input: θ = 0°, φ = 0°

\\[ |\psi\rangle = \cos\left(\frac{0^\circ}{2}\right) |0\rangle + e^{i \cdot 0^\circ} \sin\left(\frac{0^\circ}{2}\right) |1\rangle = 1 |0\rangle + 0 |1\rangle \\] \\[ x = \sin 0^\circ \cos 0^\circ = 0, \quad y = \sin 0^\circ \sin 0^\circ = 0, \quad z = \cos 0^\circ = 1 \\] \\[ \alpha = \cos\left(\frac{0^\circ}{2}\right) = 1, \quad \beta_{\text{re}} = \sin\left(\frac{0^\circ}{2}\right) \cos 0^\circ = 0, \quad \beta_{\text{im}} = \sin\left(\frac{0^\circ}{2}\right) \sin 0^\circ = 0 \\]

Result: Bloch Coordinates: (0, 0, 1), State: [1, 0 + 0i]

Example 3: General State (θ = 120°, φ = 45°)

Input: θ = 120°, φ = 45°

\\[ |\psi\rangle = \cos\left(\frac{120^\circ}{2}\right) |0\rangle + e^{i \cdot 45^\circ} \sin\left(\frac{120^\circ}{2}\right) |1\rangle \approx 0.5 |0\rangle + (0.707 e^{i \cdot 45^\circ}) |1\rangle \\] \\[ x = \sin 120^\circ \cos 45^\circ \approx 0.612, \quad y = \sin 120^\circ \sin 45^\circ \approx 0.612, \quad z = \cos 120^\circ = -0.5 \\] \\[ \alpha = \cos\left(\frac{120^\circ}{2}\right) \approx 0.5, \quad \beta_{\text{re}} = \sin\left(\frac{120^\circ}{2}\right) \cos 45^\circ \approx 0.612, \quad \beta_{\text{im}} = \sin\left(\frac{120^\circ}{2}\right) \sin 45^\circ \approx 0.612 \\]

Result: Bloch Coordinates: (0.612, 0.612, -0.5), State: [0.5, 0.612 + 0.612i]

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators