Chaos Parameter Calculator
Chaos Parameter Calculator computes Lyapunov exponents for 1D/3D systems, visualizes chaotic trajectories.
Chaos Parameter Calculator
The Chaos Parameter Calculator computes the Lyapunov exponent (\\(\lambda\\)) to quantify chaotic behavior in dynamical systems. A positive \\(\lambda\\) indicates chaos, zero indicates periodic behavior, and negative indicates stability.
Chaos Parameter Calculator: Logistic Map
Equation: \\(x_{n+1} = r x_n (1 – x_n)\\)
Lyapunov Exponent: \\(\lambda = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \ln |r (1 – 2x_i)|\\)
Chaos Parameter Calculator: Logistic Map Example 1 (Periodic)
This example demonstrates periodic behavior in the logistic map with \\(r = 3.2\\).
- Inputs:
- Mode: 1D (Logistic Map)
- Growth Rate (\\(r\\)): 3.2
- Initial \\(x_0\\): 0.5
- Iterations (\\(n\\)): 1000
- Evaluation Iteration: 500
- Expected Output:
- State (\\(x_n\\)) at \\(n = 500\\): ~0.513
- Lyapunov Exponent (\\(\lambda\\)): ~0.000 (indicating periodic behavior)
- Visualization: The time series plot shows \\(x_n\\) oscillating between fixed values, indicating a periodic cycle.
Chaos Parameter Calculator: Logistic Map Example 2 (Chaotic)
This example demonstrates chaotic behavior with \\(r = 3.9\\).
- Inputs:
- Mode: 1D (Logistic Map)
- Growth Rate (\\(r\\)): 3.9
- Initial \\(x_0\\): 0.5
- Iterations (\\(n\\)): 1000
- Evaluation Iteration: 500
- Expected Output:
- State (\\(x_n\\)) at \\(n = 500\\): ~0.483 (varies due to chaos)
- Lyapunov Exponent (\\(\lambda\\)): ~0.524 (positive, indicating chaos)
- Visualization: The time series plot shows erratic, non-repeating \\(x_n\\) values, characteristic of chaos.
Chaos Parameter Calculator: Lorenz System
Equations:
\\[ \begin{cases} \dot{x} = \sigma (y – x) \\ \dot{y} = x (\rho – z) – y \\ \dot{z} = x y – \beta z \end{cases} \\]
Lyapunov Exponent: Computed via trajectory divergence using a perturbed initial condition.
Chaos Parameter Calculator: Lorenz System Example 1 (Chaotic)
This example uses standard Lorenz parameters to demonstrate chaotic behavior.
- Inputs:
- Mode: 3D (Lorenz System)
- \\(\sigma\\): 10.0
- \\(\rho\\): 28.0
- \\(\beta\\): 2.6667
- Initial \\(x_0\\): 0.5
- Initial \\(y_0\\): 1.0
- Initial \\(z_0\\): 1.0
- Start Time (\\(t_0\\)): 0
- End Time (\\(t_f\\)): 100
- Evaluation Time: 50.0
- Expected Output:
- State (\\(x\\)) at \\(t = 50.0\\): ~-8.486
- State (\\(y\\)) at \\(t = 50.0\\): ~-8.672
- State (\\(z\\)) at \\(t = 50.0\\): ~27.012
- Lyapunov Exponent (\\(\lambda\\)): ~0.905 (positive, indicating chaos)
- Visualization: The 3D plot shows the butterfly attractor, with trajectories spiraling unpredictably around two lobes.
Chaos Parameter Calculator: Lorenz System Example 2 (Periodic)
This example uses \\(\rho = 24.0\\) to demonstrate periodic behavior.
- Inputs:
- Mode: 3D (Lorenz System)
- \\(\sigma\\): 10.0
- \\(\rho\\): 24.0
- \\(\beta\\): 2.6667
- Initial \\(x_0\\): 0.5
- Initial \\(y_0\\): 1.0
- Initial \\(z_0\\): 1.0
- Start Time (\\(t_0\\)): 0
- End Time (\\(t_f\\)): 100
- Evaluation Time: 50.0
- Expected Output:
- State (\\(x\\)) at \\(t = 50.0\\): ~6.000
- State (\\(y\\)) at \\(t = 50.0\\): ~6.500
- State (\\(z\\)) at \\(t = 50.0\\): ~20.000
- Lyapunov Exponent (\\(\lambda\\)): ~0.000 (indicating periodic behavior)
- Visualization: The 3D plot shows closed orbits, indicating a periodic trajectory rather than chaotic divergence.