google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Chinese Remainder Theorem

Chinese Remainder Theorem Solver

Chinese Remainder Theorem Solver solves a system of congruences \\( x \equiv a_i \pmod{m_i} \\) for pairwise coprime moduli and plots the solution space.

Sonya: 5″>

Chinese Remainder Theorem

The Chinese Remainder Theorem states that if the moduli \\( m_1, m_2, \ldots, m_k \\) are pairwise coprime, then the system of congruences:

\\[ x \equiv a_1 \pmod{m_1}, \quad x \equiv a_2 \pmod{m_2}, \quad \ldots, \quad x \equiv a_k \pmod{m_k} \\]

has a unique solution modulo \\( M = m_1 \cdot m_2 \cdot \ldots \cdot m_k \\).

Solution Method:

  • Compute \\( M = m_1 \cdot m_2 \cdot \ldots \cdot m_k \\).
  • For each \\( i \\), compute \\( M_i = M / m_i \\) and find the modular inverse \\( y_i \\) such that \\( M_i \cdot y_i \equiv 1 \pmod{m_i} \\).
  • The solution is:
  • \\[ x = \sum_{i=1}^k a_i \cdot M_i \cdot y_i \pmod{M} \\]
  • General solution: \\( x + k \cdot M \\), where \\( k \in \mathbb{Z} \\).

Examples

Example 1

System: \\( x \equiv 2 \pmod{3}, x \equiv 3 \pmod{4}, x \equiv 4 \pmod{5} \\)

Moduli: \\( 3, 4, 5 \\) (pairwise coprime).

\\( M = 3 \cdot 4 \cdot 5 = 60 \\).

\\( M_1 = 60/3 = 20 \\), \\( M_2 = 60/4 = 15 \\), \\( M_3 = 60/5 = 12 \\).

Inverses: \\( 20 \cdot 2 \equiv 1 \pmod{3} \\), \\( 15 \cdot 3 \equiv 1 \pmod{4} \\), \\( 12 \cdot 3 \equiv 1 \pmod{5} \\).

Solution: \\( x = 2 \cdot 20 \cdot 2 + 3 \cdot 15 \cdot 3 + 4 \cdot 12 \cdot 3 = 80 + 135 + 144 = 359 \equiv 59 \pmod{60} \\).

Example 2

System: \\( x \equiv 1 \pmod{5}, x \equiv 2 \pmod{7} \\)

Moduli: \\( 5, 7 \\) (pairwise coprime).

\\( M = 5 \cdot 7 = 35 \\).

\\( M_1 = 35/5 = 7 \\), \\( M_2 = 35/7 = 5 \\).

Inverses: \\( 7 \cdot 3 \equiv 1 \pmod{5} \\), \\( 5 \cdot 3 \equiv 1 \pmod{7} \\).

Solution: \\( x = 1 \cdot 7 \cdot 3 + 2 \cdot 5 \cdot 3 = 21 + 30 = 51 \equiv 16 \pmod{35} \\).

Example 3

System: \\( x \equiv 3 \pmod{4}, x \equiv 4 \pmod{9} \\)

Moduli: \\( 4, 9 \\) (not coprime, \\( \gcd(4, 9) = 1 \\), but we proceed).

\\( M = 4 \cdot 9 = 36 \\).

\\( M_1 = 36/4 = 9 \\), \\( M_2 = 36/9 = 4 \\).

Inverses: \\( 9 \cdot 1 \equiv 1 \pmod{4} \\), \\( 4 \cdot 7 \equiv 1 \pmod{9} \\).

Solution: \\( x = 3 \cdot 9 \cdot 1 + 4 \cdot 4 \cdot 7 = 27 + 112 = 139 \equiv 31 \pmod{36} \\).

Related Calculators

  1. Quadratic Residue Checker
  2. Diophantine Equation Solver
  3. Modular Exponentiation Solver
  4. Stokes Flow Simulator
  5. Determinant Calculator
  6. Mid-Point Calculator
  7. More Math Calculators