google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Diophantine Equation Solver

Diophantine Equation Solver finds integer solutions to linear equations of the form \\( ax + by = c \\) with solution plotting.

Diophantine Equation Solver

Finds integer solutions to the linear Diophantine equation:

Equation: \\( ax + by = c \\)

Conditions for Solvability:

  • Solutions exist if and only if \\(\gcd(a, b)\\) divides \\( c \\).
  • If \\(\gcd(a, b) = d\\) and \\( d \mid c \\), a particular solution can be found.
  • General solution: If \\( (x_0, y_0) \\) is a particular solution, then: \\[ x = x_0 + \frac{b}{d} k, \quad y = y_0 – \frac{a}{d} k, \quad k \in \mathbb{Z} \\]

Where:

  • \\( a, b \\): Integer coefficients
  • \\( x, y \\): Integer variables
  • \\( c \\): Integer constant
  • \\( \gcd(a, b) \\): Greatest common divisor
  • \\( k \\): Integer parameter

Diophantine Equation Solver

Diophantine Equation Solver (Example 1)

Equation: \\( 3x + 6y = 9 \\)

\\[ \gcd(3, 6) = 3, \quad 3 \mid 9 \\] \\[ x_0 = 3, y_0 = 0 \quad (\text{particular solution}) \\] \\[ x = 3 + 2k, \quad y = -k, \quad k \in \mathbb{Z} \\]

Diophantine Equation Solver (Example 2)

Equation: \\( 4x + 6y = 10 \\)

\\[ \gcd(4, 6) = 2, \quad 2 \mid 10 \\] \\[ x_0 = 2, y_0 = 1 \quad (\text{particular solution}) \\] \\[ x = 2 + 3k, \quad y = 1 – 2k, \quad k \in \mathbb{Z} \\]

Diophantine Equation Solver (Example 3)

Equation: \\( 5x + 7y = 13 \\)

\\[ \gcd(5, 7) = 1, \quad 1 \mid 13 \\] \\[ x_0 = 6, y_0 = -1 \quad (\text{particular solution}) \\] \\[ x = 6 + 7k, \quad y = -1 – 5k, \quad k \in \mathbb{Z} \\]

Diophantine Equation Solver (Example 4)

Equation: \\( 2x + 4y = 6 \\)

\\[ \gcd(2, 4) = 2, \quad 2 \mid 6 \\] \\[ x_0 = 3, y_0 = 0 \quad (\text{particular solution}) \\] \\[ x = 3 + 2k, \quad y = -k, \quad k \in \mathbb{Z} \\]

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators