Electrostatic Potential Solver
Electrostatic Potential Solver computes potential V for a point charge, visualizing vs. distance.
Formulas Used in Electrostatic Potential Solver
The solver computes the electrostatic potential for a point charge at the origin:
Electrostatic Potential:
\[ V = \frac{1}{4\pi \epsilon_0} \frac{q}{r} \]Where:
- \( V \): Electrostatic potential (V)
- \( q \): Charge (C)
- \( r \): Distance from the charge (m)
- \( \epsilon_0 = 8.854187817 \times 10^{-12} \, \text{F/m} \): Permittivity of free space
Example Calculations
Example 1: 1 nC at 0.1 m
Input: \( q = 10^{-9} \, \text{C}, r = 0.1 \, \text{m} \)
\[
V = \frac{1}{4\pi \cdot 8.854187817 \times 10^{-12}} \frac{10^{-9}}{0.1} \approx 89.876 \, \text{V}
\]
Result: \( V \approx 89.876 \, \text{V} \)
Example 2: 1 nC at 0.5 m
Input: \( q = 10^{-9} \, \text{C}, r = 0.5 \, \text{m} \)
\[
V = \frac{1}{4\pi \cdot 8.854187817 \times 10^{-12}} \frac{10^{-9}}{0.5} \approx 17.975 \, \text{V}
\]
Result: \( V \approx 17.975 \, \text{V} \)