Free Wavefunction Normalizer
Wavefunction Normalizer computes normalization constant and probability density for a 1D wave function from discrete points.
Formulas Used in Wavefunction Normalizer
The calculator normalizes a 1D wave function using the following formulas:
Normalization Condition:
\\[ \int_{a}^{b} |\psi(x)|^2 \, dx = 1 \\]Normalization Constant:
\\[ A = \sqrt{\frac{1}{\int_{a}^{b} |\psi(x)|^2 \, dx}} \\]Normalized Wave Function:
\\[ \psi_{\text{norm}}(x) = A \cdot \psi(x) \\]Probability Density Integral:
\\[ P = \int_{a}^{b} |\psi_{\text{norm}}(x)|^2 \, dx \\]Where:
- \\( \psi(x) \\): Unnormalized wave function
- \\( a, b \\): Integration limits (m)
- \\( A \\): Normalization constant (m⁻¹/²)
- \\( \psi_{\text{norm}}(x) \\): Normalized wave function
- \\( P \\): Probability density integral (should be 1)
Example Calculations
Example 1: Linear Wave Function (Triangular)
Input: Lower Limit = -1 m, Upper Limit = 1 m, Points: (-1, 0.5), (0, 1), (1, 0.5)
Result: Normalization Constant: 1.265 m⁻¹/², ψ_norm(-1) = 0.632, ψ_norm(0) = 1.265, ψ_norm(1) = 0.632, Probability Density Integral: 1
Example 2: Quadratic Wave Function (Parabolic)
Input: Lower Limit = -1 m, Upper Limit = 1 m, Points: (-1, 0.5), (-0.5, 0.75), (0, 1), (0.5, 0.75), (1, 0.5)
Result: Normalization Constant: 1.206 m⁻¹/², ψ_norm(-1) = 0.603, ψ_norm(-0.5) = 0.905, ψ_norm(0) = 1.206, ψ_norm(0.5) = 0.905, ψ_norm(1) = 0.603, Probability Density Integral: 1
Example 3: Sinusoidal Wave Function
Input: Lower Limit = -π m, Upper Limit = π m, Points: (-π, 0), (-π/2, 1), (0, 0), (π/2, -1), (π, 0)
Result: Normalization Constant: 0.798 m⁻¹/², ψ_norm(-π) = 0, ψ_norm(-π/2) = 0.798, ψ_norm(0) = 0, ψ_norm(π/2) = -0.798, ψ_norm(π) = 0, Probability Density Integral: 1