google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Free Fall Calculator

Free Fall Calculator solves for a missing variable in free fall motion (no air resistance) using initial height, final height, initial velocity, time, and gravity.

Enter known values (leave the unknown field blank):

Methodology Used in Free Fall Calculator

The calculator uses kinematic equations adapted for free fall (acceleration = \\(-g\\)):

1. \\( v = v_0 – g t \\)

2. \\( h = h_0 + v_0 t – \frac{1}{2} g t^2 \\)

3. \\( v^2 = v_0^2 – 2 g (h_0 – h) \\)

4. \\( h = h_0 + \frac{v + v_0}{2} t \\)

Where:

  • \\( h_0 \\): Initial height (m)
  • \\( h \\): Final height (m)
  • \\( v_0 \\): Initial velocity (m/s, positive upward)
  • \\( v \\): Final velocity (m/s)
  • \\( g \\): Gravitational acceleration (m/s², positive)
  • \\( t \\): Time (s)

The solver identifies the missing variable, selects the appropriate equation, and solves algebraically, showing each step.

Example Calculation

Sample Input

Initial Height = 50 m, Final Height = 0 m, Initial Velocity = 0 m/s, Gravity = 9.81 m/s², Time = ?

Step 1: Identify knowns: \\( h_0 = 50 \\), \\( h = 0 \\), \\( v_0 = 0 \\), \\( g = 9.81 \\), solve for \\( t \\).

Step 2: Select equation with \\( h_0 \\), \\( h \\), \\( v_0 \\), \\( g \\), and \\( t \\):

\\[ h = h_0 + v_0 t – \frac{1}{2} g t^2 \\]

Step 3: Substitute values:

\\[ 0 = 50 + 0 \cdot t – \frac{1}{2} \cdot 9.81 \cdot t^2 \\] \\[ \frac{1}{2} \cdot 9.81 \cdot t^2 = 50 \\] \\[ t^2 = \frac{50 \cdot 2}{9.81} \approx 10.1937 \\] \\[ t = \sqrt{10.1937} \approx 3.19 \, \text{s} \\]

Result: Time = 3.19 s.

  1. Vitamin Deficiency Risk Calculator
  2. Ergonomic Calculator
  3. Circadian Rhythm Alignment Calculator
  4. Stress Hormone Estimator
  5. Health Calculators