google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Graphing Calculator

Graphing Calculator plots mathematical functions (e.g., x^2, sin(x)) with adjustable x and y axis ranges, displaying step-by-step function evaluations.

Methodology Used in Graphing Calculator

The calculator evaluates the function at discrete points and plots them:

Function Evaluation:

1. Parse user-defined function \\( f(x) \\) (e.g., \\( x^2 \\), \\( \sin(x) \\)).

2. For \\( x \\) from \\( x_{\text{min}} \\) to \\( x_{\text{max}} \\) with step \\( \Delta x = \frac{x_{\text{max}} – x_{\text{min}}}{N} \\):

\\[ y_i = f(x_i), \quad x_i = x_{\text{min}} + i \cdot \Delta x, \quad i = 0, 1, \ldots, N \\]

3. Map \\( (x_i, y_i) \\) to canvas coordinates and plot.

Where:

  • \\( f(x) \\): User-entered function
  • \\( x_{\text{min}}, x_{\text{max}} \\): X-axis range
  • \\( y_{\text{min}}, y_{\text{max}} \\): Y-axis range
  • \\( N \\): Number of points (e.g., 100)

Example Calculation

Sample Input

Function = x^2, X-Min = -2, X-Max = 2, Y-Min = -1, Y-Max = 5

Step 1: Define step size (\\( N = 100 \\)):

\\[ \Delta x = \frac{2 – (-2)}{100} = 0.04 \\]

Step 2: Evaluate at sample points (e.g., \\( x = -2, -1.96, \ldots, 2 \\)):

\\[ y(-2) = (-2)^2 = 4, \quad y(-1.96) = (-1.96)^2 \approx 3.8416, \quad \ldots, \quad y(2) = 2^2 = 4 \\]

Step 3: Plot points on canvas, scaled to fit \\( y \in [-1, 5] \\).

Result: Parabolic graph of \\( y = x^2 \\).

Related Calculators

  1. Newton-Raphson Method Calculator
  2. Matrix Determinant Calculator
  3. Mid-Point Calculator
  4. Determinant Calculator
  5. Derivative Calculator
  6. More Math Calculators