Gravitational Wave Signal Strength Calculator
Gravitational Wave Signal Strength Calculator computes strain amplitude from a binary system, using masses, distance, and frequency for astrophysical analysis.
Formulas Used in Gravitational Wave Signal Strength Calculator
The calculator uses the following formulas to estimate gravitational wave strain:
Reduced Mass:
\\[ \mu = \frac{m_1 m_2}{m_1 + m_2} \\]Strain Amplitude:
\\[ h = \frac{4 (G \mu)^{5/3}}{c^4 r} (\pi f)^{2/3} \\]Where:
- \\( \mu \\): Reduced mass (kg)
- \\( m_1, m_2 \\): Masses of the two objects (kg)
- \\( G \\): Gravitational constant (\\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \\))
- \\( c \\): Speed of light (\\( 2.99792458 \times 10^8 \, \text{m/s} \\))
- \\( r \\): Distance to source (m)
- \\( f \\): Gravitational wave frequency (Hz)
- \\( h \\): Strain amplitude (dimensionless)
Example Calculations
Example 1: Binary Neutron Star Merger
Input: \\( m_1 = 2.7816 \times 10^{30} \\) kg (1.4 \\( M_\odot \\)), \\( m_2 = 2.7816 \times 10^{30} \\) kg, Distance = \\( 1.234272 \times 10^{25} \\) m (400 Mpc), Frequency = 100 Hz
Result: Reduced Mass = \\( 1.3908 \times 10^{30} \\) kg, Strain Amplitude = \\( 2.18 \times 10^{-21} \\)
Example 2: Binary Black Hole Merger
Input: \\( m_1 = 5.967 \times 10^{31} \\) kg (30 \\( M_\odot \\)), \\( m_2 = 5.967 \times 10^{31} \\) kg, Distance = \\( 3.08568 \times 10^{25} \\) m (1 Gpc), Frequency = 50 Hz
Result: Reduced Mass = \\( 2.9835 \times 10^{31} \\) kg, Strain Amplitude = \\( 3.51 \times 10^{-21} \\)
Example 3: Asymmetric Binary System
Input: \\( m_1 = 1.989 \times 10^{31} \\) kg (10 \\( M_\odot \\)), \\( m_2 = 9.945 \times 10^{31} \\) kg (50 \\( M_\odot \\)), Distance = \\( 1.54284 \times 10^{25} \\) m (500 Mpc), Frequency = 80 Hz
Result: Reduced Mass = \\( 1.6575 \times 10^{31} \\) kg, Strain Amplitude = \\( 4.02 \times 10^{-21} \\)