google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Gravitational Wave Signal Strength Calculator

Gravitational Wave Signal Strength Calculator computes strain amplitude from a binary system, using masses, distance, and frequency for astrophysical analysis.

Formulas Used in Gravitational Wave Signal Strength Calculator

The calculator uses the following formulas to estimate gravitational wave strain:

Reduced Mass:

\\[ \mu = \frac{m_1 m_2}{m_1 + m_2} \\]

Strain Amplitude:

\\[ h = \frac{4 (G \mu)^{5/3}}{c^4 r} (\pi f)^{2/3} \\]

Where:

  • \\( \mu \\): Reduced mass (kg)
  • \\( m_1, m_2 \\): Masses of the two objects (kg)
  • \\( G \\): Gravitational constant (\\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \\))
  • \\( c \\): Speed of light (\\( 2.99792458 \times 10^8 \, \text{m/s} \\))
  • \\( r \\): Distance to source (m)
  • \\( f \\): Gravitational wave frequency (Hz)
  • \\( h \\): Strain amplitude (dimensionless)

Example Calculations

Example 1: Binary Neutron Star Merger

Input: \\( m_1 = 2.7816 \times 10^{30} \\) kg (1.4 \\( M_\odot \\)), \\( m_2 = 2.7816 \times 10^{30} \\) kg, Distance = \\( 1.234272 \times 10^{25} \\) m (400 Mpc), Frequency = 100 Hz

\\[ \mu = \frac{2.7816 \times 10^{30} \cdot 2.7816 \times 10^{30}}{2.7816 \times 10^{30} + 2.7816 \times 10^{30}} \approx 1.3908 \times 10^{30} \ \text{kg} \\] \\[ h = \frac{4 (6.67430 \times 10^{-11} \cdot 1.3908 \times 10^{30})^{5/3}}{(2.99792458 \times 10^8)^4 \cdot 1.234272 \times 10^{25}} (\pi \cdot 100)^{2/3} \approx 2.18 \times 10^{-21} \\]

Result: Reduced Mass = \\( 1.3908 \times 10^{30} \\) kg, Strain Amplitude = \\( 2.18 \times 10^{-21} \\)

Example 2: Binary Black Hole Merger

Input: \\( m_1 = 5.967 \times 10^{31} \\) kg (30 \\( M_\odot \\)), \\( m_2 = 5.967 \times 10^{31} \\) kg, Distance = \\( 3.08568 \times 10^{25} \\) m (1 Gpc), Frequency = 50 Hz

\\[ \mu = \frac{5.967 \times 10^{31} \cdot 5.967 \times 10^{31}}{5.967 \times 10^{31} + 5.967 \times 10^{31}} \approx 2.9835 \times 10^{31} \ \text{kg} \\] \\[ h = \frac{4 (6.67430 \times 10^{-11} \cdot 2.9835 \times 10^{31})^{5/3}}{(2.99792458 \times 10^8)^4 \cdot 3.08568 \times 10^{25}} (\pi \cdot 50)^{2/3} \approx 3.51 \times 10^{-21} \\]

Result: Reduced Mass = \\( 2.9835 \times 10^{31} \\) kg, Strain Amplitude = \\( 3.51 \times 10^{-21} \\)

Example 3: Asymmetric Binary System

Input: \\( m_1 = 1.989 \times 10^{31} \\) kg (10 \\( M_\odot \\)), \\( m_2 = 9.945 \times 10^{31} \\) kg (50 \\( M_\odot \\)), Distance = \\( 1.54284 \times 10^{25} \\) m (500 Mpc), Frequency = 80 Hz

\\[ \mu = \frac{1.989 \times 10^{31} \cdot 9.945 \times 10^{31}}{1.989 \times 10^{31} + 9.945 \times 10^{31}} \approx 1.6575 \times 10^{31} \ \text{kg} \\] \\[ h = \frac{4 (6.67430 \times 10^{-11} \cdot 1.6575 \times 10^{31})^{5/3}}{(2.99792458 \times 10^8)^4 \cdot 1.54284 \times 10^{25}} (\pi \cdot 80)^{2/3} \approx 4.02 \times 10^{-21} \\]

Result: Reduced Mass = \\( 1.6575 \times 10^{31} \\) kg, Strain Amplitude = \\( 4.02 \times 10^{-21} \\)

Related To Gravitational Wave Signal Strength Calculator

  1. Tidal Force on Satellites Calculator
  2. Gravitational Wave Signal Strength Calculator
  3. Asteroid Impact Energy Calculator
  4. Light Travel Time Calculator
  5. Black Hole Event Horizon Radius Calculator
  6. Astronomy