google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Heisenberg Uncertainty Priniciple Calculator

Heisenberg Uncertainty Priniciple Calculator computes position and momentum uncertainties, verifying the principle for quantum systems.

Formulas Used in Heisenberg Uncertainty Calculator

The calculator verifies the Heisenberg Uncertainty Principle using the following formulas:

Heisenberg Uncertainty Principle:

\\[ \Delta x \cdot \Delta p \geq \frac{\hbar}{2} \\]

Uncertainty Product:

\\[ U = \Delta x \cdot \Delta p \\]

Relative Uncertainty Ratio:

\\[ R = \frac{\Delta x \cdot \Delta p}{\hbar / 2} \cdot 100 \\]

Standard Deviations:

\\[ \Delta x = \sqrt{\langle x^2 \rangle – \langle x \rangle^2}, \quad \Delta p = \sqrt{\langle p^2 \rangle – \langle p \rangle^2} \\]

Where:

  • \\( \hbar \\): Reduced Planck constant (\\( 1.0545718 \times 10^{-34} \, \text{J·s} \\))
  • \\( \Delta x \\): Uncertainty in position (m)
  • \\( \Delta p \\): Uncertainty in momentum (kg·m/s)
  • \\( U \\): Uncertainty product (J·s)
  • \\( R \\): Relative uncertainty ratio (%)
  • \\( \langle x \rangle, \langle p \rangle \\): Mean position and momentum
  • \\( \langle x^2 \rangle, \langle p^2 \rangle \\): Mean squared position and momentum

Example Calculations

Example 1: Electron with Minimal Uncertainty

Input: Points: (0, 0), (0.1, 1e-34), (-0.1, -1e-34)

\\[ \langle x \rangle = \frac{0 + 0.1 + (-0.1)}{3} = 0, \quad \langle x^2 \rangle = \frac{0^2 + 0.1^2 + (-0.1)^2}{3} = 0.006667 \\] \\[ \Delta x = \sqrt{0.006667 – 0^2} \approx 0.08165 \, \text{m} \\] \\[ \langle p \rangle = \frac{0 + 1 \times 10^{-34} + (-1 \times 10^{-34})}{3} = 0, \quad \langle p^2 \rangle = \frac{0^2 + (1 \times 10^{-34})^2 + (-1 \times 10^{-34})^2}{3} \approx 6.667 \times 10^{-69} \\] \\[ \Delta p = \sqrt{6.667 \times 10^{-69} – 0^2} \approx 8.165 \times 10^{-35} \, \text{kg·m/s} \\] \\[ U = \Delta x \cdot \Delta p \approx 6.667 \times 10^{-36} \, \text{J·s}, \quad R = \frac{6.667 \times 10^{-36}}{5.272859 \times 10^{-35} / 2} \cdot 100 \approx 25.30 \, \% \\]

Result: \\( \Delta x \approx 0.08165 \, \text{m}, \Delta p \approx 8.165 \times 10^{-35} \, \text{kg·m/s}, U \approx 6.667 \times 10^{-36} \, \text{J·s}, R \approx 25.30 \, \% \\)

Example 2: Electron with Moderate Uncertainty

Input: Points: (0, 0), (0.5, 5e-34), (-0.5, -5e-34)

\\[ \Delta x \approx 0.40825 \, \text{m}, \quad \Delta p \approx 4.082 \times 10^{-34} \, \text{kg·m/s}, \quad U \approx 1.667 \times 10^{-34} \, \text{J·s}, \quad R \approx 632.46 \, \% \\]

Result: \\( \Delta x \approx 0.40825 \, \text{m}, \Delta p \approx 4.082 \times 10^{-34} \, \text{kg·m/s}, U \approx 1.667 \times 10^{-34} \, \text{J·s}, R \approx 632.46 \, \% \\)

Example 3: Macroscopic Particle with Large Uncertainty

Input: Points: (0, 0), (1, 1e-33), (-1, -1e-33)

\\[ \Delta x \approx 0.8165 \, \text{m}, \quad \Delta p \approx 8.165 \times 10^{-34} \, \text{kg·m/s}, \quad U \approx 6.667 \times 10^{-34} \, \text{J·s}, \quad R \approx 2529.82 \, \% \\]

Result: \\( \Delta x \approx 0.8165 \, \text{m}, \Delta p \approx 8.165 \times 10^{-34} \, \text{kg·m/s}, U \approx 6.667 \times 10^{-34} \, \text{J·s}, R \approx 2529.82 \, \% \\)

  1. Tidal Force on Satellites Calculator
  2. Gravitational Wave Signal Strength Calculator
  3. Asteroid Impact Energy Calculator
  4. Light Travel Time Calculator
  5. Black Hole Event Horizon Radius Calculator
  6. Astronomy