Heisenberg Uncertainty Priniciple Calculator
Heisenberg Uncertainty Priniciple Calculator computes position and momentum uncertainties, verifying the principle for quantum systems.
Formulas Used in Heisenberg Uncertainty Calculator
The calculator verifies the Heisenberg Uncertainty Principle using the following formulas:
Heisenberg Uncertainty Principle:
\\[ \Delta x \cdot \Delta p \geq \frac{\hbar}{2} \\]Uncertainty Product:
\\[ U = \Delta x \cdot \Delta p \\]Relative Uncertainty Ratio:
\\[ R = \frac{\Delta x \cdot \Delta p}{\hbar / 2} \cdot 100 \\]Standard Deviations:
\\[ \Delta x = \sqrt{\langle x^2 \rangle – \langle x \rangle^2}, \quad \Delta p = \sqrt{\langle p^2 \rangle – \langle p \rangle^2} \\]Where:
- \\( \hbar \\): Reduced Planck constant (\\( 1.0545718 \times 10^{-34} \, \text{J·s} \\))
- \\( \Delta x \\): Uncertainty in position (m)
- \\( \Delta p \\): Uncertainty in momentum (kg·m/s)
- \\( U \\): Uncertainty product (J·s)
- \\( R \\): Relative uncertainty ratio (%)
- \\( \langle x \rangle, \langle p \rangle \\): Mean position and momentum
- \\( \langle x^2 \rangle, \langle p^2 \rangle \\): Mean squared position and momentum
Example Calculations
Example 1: Electron with Minimal Uncertainty
Input: Points: (0, 0), (0.1, 1e-34), (-0.1, -1e-34)
Result: \\( \Delta x \approx 0.08165 \, \text{m}, \Delta p \approx 8.165 \times 10^{-35} \, \text{kg·m/s}, U \approx 6.667 \times 10^{-36} \, \text{J·s}, R \approx 25.30 \, \% \\)
Example 2: Electron with Moderate Uncertainty
Input: Points: (0, 0), (0.5, 5e-34), (-0.5, -5e-34)
Result: \\( \Delta x \approx 0.40825 \, \text{m}, \Delta p \approx 4.082 \times 10^{-34} \, \text{kg·m/s}, U \approx 1.667 \times 10^{-34} \, \text{J·s}, R \approx 632.46 \, \% \\)
Example 3: Macroscopic Particle with Large Uncertainty
Input: Points: (0, 0), (1, 1e-33), (-1, -1e-33)
Result: \\( \Delta x \approx 0.8165 \, \text{m}, \Delta p \approx 8.165 \times 10^{-34} \, \text{kg·m/s}, U \approx 6.667 \times 10^{-34} \, \text{J·s}, R \approx 2529.82 \, \% \\)