google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Hydropower Head Loss Calculator

Hydropower Head Loss Calculator estimates the head loss in a hydropower penstock due to friction using the Darcy-Weisbach equation, with a detailed breakdown and step-by-step calculations.

Formulas Used in Hydropower Head Loss Calculator

The calculator uses the following formulas to estimate head loss in a hydropower penstock:

Head Loss (Darcy-Weisbach):

\\[ h_f = f \cdot \frac{L}{D} \cdot \frac{v^2}{2g} \\]

Flow Velocity:

\\[ v = \frac{Q}{A} = \frac{Q}{\frac{\pi D^2}{4}} \\]

Reynolds Number:

\\[ Re = \frac{\rho v D}{\mu} \\]

Friction Factor (Laminar, Re < 2000):

\\[ f = \frac{64}{Re} \\]

Friction Factor (Turbulent, Colebrook-White):

\\[ \frac{1}{\sqrt{f}} = -2 \log_{10} \left( \frac{\epsilon / D}{3.7} + \frac{2.51}{Re \sqrt{f}} \right) \\]

Where:

  • \\( h_f \\): Head loss (m)
  • \\( f \\): Friction factor (dimensionless)
  • \\( L \\): Pipe length (m)
  • \\( D \\): Pipe diameter (m)
  • \\( v \\): Flow velocity (m/s)
  • \\( g \\): Gravitational acceleration (9.81 m/s²)
  • \\( Q \\): Flow rate (m³/s)
  • \\( A \\): Pipe cross-sectional area (m²)
  • \\( Re \\): Reynolds number (dimensionless)
  • \\( \rho \\): Water density (1000 kg/m³)
  • \\( \mu \\): Dynamic viscosity (Pa·s, temperature-dependent)
  • \\( \epsilon \\): Pipe roughness (m)

Example Calculations

Example 1: Small-Scale Penstock

Input: Flow Rate = 1 m³/s, Diameter = 0.3 m, Length = 50 m, Material = Steel (ε = 0.000045 m), Temperature = 20°C

\\[ v = \frac{1}{\frac{\pi \cdot 0.3^2}{4}} \approx 14.147 \ \text{m/s} \\] \\[ \mu = 0.00179 \cdot e^{-0.0256 \cdot 20} \approx 0.00107 \ \text{Pa·s} \\] \\[ Re = \frac{1000 \cdot 14.147 \cdot 0.3}{0.00107} \approx 3,963,551 \\] \\[ f \approx 0.0193 \ \text{(iterative solution)} \\] \\[ h_f = 0.0193 \cdot \frac{50}{0.3} \cdot \frac{14.147^2}{2 \cdot 9.81} \approx 32.85 \ \text{m} \\]

Result: Velocity = 14.147 m/s, Reynolds Number = 3,963,551, Friction Factor = 0.0193, Head Loss = 32.85 m

Example 2: Medium-Scale Penstock

Input: Flow Rate = 2.265 m³/s, Diameter = 0.8 m, Length = 200 m, Material = PVC (ε = 0.0000015 m), Temperature = 15°C

\\[ v = \frac{2.265}{\frac{\pi \cdot 0.8^2}{4}} \approx 4.503 \ \text{m/s} \\] \\[ \mu = 0.00179 \cdot e^{-0.0256 \cdot 15} \approx 0.00122 \ \text{Pa·s} \\] \\[ Re = \frac{1000 \cdot 4.503 \cdot 0.8}{0.00122} \approx 2,952,459 \\] \\[ f \approx 0.0137 \ \text{(iterative solution)} \\] \\[ h_f = 0.0137 \cdot \frac{200}{0.8} \cdot \frac{4.503^2}{2 \cdot 9.81} \approx 3.54 \ \text{m} \\]

Result: Velocity = 4.503 m/s, Reynolds Number = 2,952,459, Friction Factor = 0.0137, Head Loss = 3.54 m

Example 3: Large-Scale Penstock

Input: Flow Rate = 11.992 m³/s, Diameter = 2 m, Length = 500 m, Material = Concrete (ε = 0.0003 m), Temperature = 10°C

\\[ v = \frac{11.992}{\frac{\pi \cdot 2^2}{4}} \approx 3.816 \ \text{m/s} \\] \\[ \mu = 0.00179 \cdot e^{-0.0256 \cdot 10} \approx 0.00139 \ \text{Pa·s} \\] \\[ Re = \frac{1000 \cdot 3.816 \cdot 2}{0.00139} \approx 5,496,403 \\] \\[ f \approx 0.0178 \ \text{(iterative solution)} \\] \\[ h_f = 0.0178 \cdot \frac{500}{2} \cdot \frac{3.816^2}{2 \cdot 9.81} \approx 3.30 \ \text{m} \\]

Result: Velocity = 3.816 m/s, Reynolds Number = 5,496,403, Friction Factor = 0.0178, Head Loss = 3.30 m

Related To Hydropower Head Loss Calculator

  1. Hydropower Water Usage Calculator
  2. Hydro Power Revenue Estimator
  3. Hydropower Head Loss Calculator
  4. Hydropower Turbine Efficiency Calculator
  5. Dam Height Optimization Calculator
  6. More Engineering Related Calculator