Hydropower Head Loss Calculator
Hydropower Head Loss Calculator estimates the head loss in a hydropower penstock due to friction using the Darcy-Weisbach equation, with a detailed breakdown and step-by-step calculations.
Formulas Used in Hydropower Head Loss Calculator
The calculator uses the following formulas to estimate head loss in a hydropower penstock:
Head Loss (Darcy-Weisbach):
\\[ h_f = f \cdot \frac{L}{D} \cdot \frac{v^2}{2g} \\]Flow Velocity:
\\[ v = \frac{Q}{A} = \frac{Q}{\frac{\pi D^2}{4}} \\]Reynolds Number:
\\[ Re = \frac{\rho v D}{\mu} \\]Friction Factor (Laminar, Re < 2000):
\\[ f = \frac{64}{Re} \\]Friction Factor (Turbulent, Colebrook-White):
\\[ \frac{1}{\sqrt{f}} = -2 \log_{10} \left( \frac{\epsilon / D}{3.7} + \frac{2.51}{Re \sqrt{f}} \right) \\]Where:
- \\( h_f \\): Head loss (m)
- \\( f \\): Friction factor (dimensionless)
- \\( L \\): Pipe length (m)
- \\( D \\): Pipe diameter (m)
- \\( v \\): Flow velocity (m/s)
- \\( g \\): Gravitational acceleration (9.81 m/s²)
- \\( Q \\): Flow rate (m³/s)
- \\( A \\): Pipe cross-sectional area (m²)
- \\( Re \\): Reynolds number (dimensionless)
- \\( \rho \\): Water density (1000 kg/m³)
- \\( \mu \\): Dynamic viscosity (Pa·s, temperature-dependent)
- \\( \epsilon \\): Pipe roughness (m)
Example Calculations
Example 1: Small-Scale Penstock
Input: Flow Rate = 1 m³/s, Diameter = 0.3 m, Length = 50 m, Material = Steel (ε = 0.000045 m), Temperature = 20°C
Result: Velocity = 14.147 m/s, Reynolds Number = 3,963,551, Friction Factor = 0.0193, Head Loss = 32.85 m
Example 2: Medium-Scale Penstock
Input: Flow Rate = 2.265 m³/s, Diameter = 0.8 m, Length = 200 m, Material = PVC (ε = 0.0000015 m), Temperature = 15°C
Result: Velocity = 4.503 m/s, Reynolds Number = 2,952,459, Friction Factor = 0.0137, Head Loss = 3.54 m
Example 3: Large-Scale Penstock
Input: Flow Rate = 11.992 m³/s, Diameter = 2 m, Length = 500 m, Material = Concrete (ε = 0.0003 m), Temperature = 10°C
Result: Velocity = 3.816 m/s, Reynolds Number = 5,496,403, Friction Factor = 0.0178, Head Loss = 3.30 m