google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Kurtosis Calculator

Kurtosis Calculator computes the sample kurtosis of a dataset, measuring the “tailedness” of its distribution. Positive kurtosis indicates heavier tails (leptokurtic), while negative indicates lighter tails (platykurtic).

Enter comma-separated values (e.g., 1,2,3,4):

Methodology Used in Kurtosis Calculator

The calculator computes sample kurtosis using:

1. Kurtosis: \\( K = \frac{n (n+1) \sum (x_i – \bar{x})^4}{(n-1)(n-2)(n-3) s^4} – \frac{3 (n-1)^2}{(n-2)(n-3)} \\)

Where:

  • \\( K \\): Sample kurtosis
  • \\( n \\): Sample size
  • \\( x_i \\): Data points
  • \\( \bar{x} \\): Sample mean
  • \\( s^2 \\): Sample variance

Measures tailedness relative to a normal distribution.

Example Calculation

Sample Input

Dataset = 1, 2, 3, 4, 5

Step 1: Mean: \\( \bar{x} = \frac{1+2+3+4+5}{5} = 3 \\)

Step 2: Variance: \\( s^2 = \frac{\sum (x_i – 3)^2}{4} = \frac{10}{4} = 2.5 \\)

Step 3: Fourth moment: \\( \sum (x_i – 3)^4 = 34 \\)

Step 4: Kurtosis: \\( K = \frac{5 \cdot 6 \cdot 34}{4 \cdot 3 \cdot 2 \cdot 2.5^4} – \frac{3 \cdot 4^2}{3 \cdot 2} = -1.2 \\)

Result: Kurtosis = -1.2 (platykurtic).

More Related Calculators

  1. Kurtosis Calculator
  2. Skewness Calculator
  3. Interquartile Range Calculator
  4. Quartile Calculator
  5. Percentile Calculator
  6. Statistics Calculators