google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Lagrangian Mechanics Solver

Lagrangian Mechanics Solver

Lagrangian Mechanics Solver computes 1D/2D motion from user-defined Lagrangian, visualizes trajectories with detailed inputs.

Lagrangian Mechanics Overview

The solver uses the Euler-Lagrange equation to derive equations of motion:

\\[ \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) – \frac{\partial L}{\partial q_i} = 0 \\]

Where:

  • \\(L = T – V\\): Lagrangian (kinetic minus potential energy)
  • \\(q_i\\): Generalized coordinates (\\(x\\) in 1D; \\(x, y\\) in 2D)
  • \\(\dot{q}_i\\): Time derivatives (velocities)

Example: 1D Harmonic Oscillator

\\(T = \frac{1}{2} m \dot{x}^2\\), \\(V = \frac{1}{2} k x^2\\), \\(m = 1.0 \, \text{kg}\\), \\(k = 1.0 \, \text{N/m}\\), initial: \\(x_0 = 1.0 \, \text{m}, \dot{x}_0 = 0.0 \, \text{m/s}\\)

Equation: \\(m \ddot{x} + k x = 0\\)

Example: 2D Pendulum

\\(T = \frac{1}{2} m ( \dot{x}^2 + \dot{y}^2 )\\), \\(V = m g y\\), \\(m = 1.0 \, \text{kg}\\), \\(g = 9.81 \, \text{m/s}^2\\), initial: \\(x_0 = 1.0, y_0 = 0.0, \dot{x}_0 = 0.0, \dot{y}_0 = 0.0\\)

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators