google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Learning Retention Rate Calculator

Learning Retention Rate Calculator estimates retention, decay, and efficiency based on study time, review, and method.

Formulas Used in Learning Retention Rate Calculator

The calculator uses the following formulas to estimate learning retention:

Retention Rate:

\\[ R_r = \min\left(100 \cdot \frac{S_t \cdot R_f \cdot M_l}{C_m}, 100\right) \\]

Knowledge Decay:

\\[ K_d = \min\left(100 \cdot \frac{C_m}{S_t \cdot R_f \cdot M_l}, 100\right) \\]

Study Efficiency:

\\[ E_s = \min\left(100 \cdot \frac{S_t \cdot M_l}{C_m \cdot (1 / R_f)}, 100\right) \\]

Where:

  • \\( R_r \\): Retention rate (%)
  • \\( S_t \\): Study time multiplier (\\( \sqrt{S_h / 10} \\), where \\( S_h \\) is study hours)
  • \\( R_f \\): Review frequency multiplier (Rare: 0.7, Regular: 1.0, Frequent: 1.3)
  • \\( M_l \\): Learning method multiplier (Reading: 0.8, Active Recall: 1.0, Spaced Repetition: 1.2)
  • \\( C_m \\): Material complexity multiplier (Simple: 0.8, Moderate: 1.0, Complex: 1.2)
  • \\( K_d \\): Knowledge decay (%)
  • \\( E_s \\): Study efficiency (%)

Example Calculations

Example 1: Short Study, Frequent Review, Simple Material, Spaced Repetition

Input: Study Time = 5 hours, Review Frequency = Frequent, Material Complexity = Simple, Learning Method = Spaced Repetition

\\[ S_t = \sqrt{S_h / 10} = \sqrt{5 / 10} = 0.707 \\] \\[ R_r = \min\left(100 \cdot \frac{S_t \cdot R_f \cdot M_l}{C_m}, 100\right) = \min\left(100 \cdot \frac{0.707 \cdot 1.3 \cdot 1.2}{0.8}, 100\right) = 100 \ \% \\] \\[ K_d = \min\left(100 \cdot \frac{C_m}{S_t \cdot R_f \cdot M_l}, 100\right) = \min\left(100 \cdot \frac{0.8}{0.707 \cdot 1.3 \cdot 1.2}, 100\right) = 72.45 \ \% \\] \\[ E_s = \min\left(100 \cdot \frac{S_t \cdot M_l}{C_m \cdot (1 / R_f)}, 100\right) = \min\left(100 \cdot \frac{0.707 \cdot 1.2}{0.8 \cdot (1 / 1.3)}, 100\right) = 100 \ \% \\]

Result: Retention Rate: 100%, Knowledge Decay: 72.45%, Study Efficiency: 100%

Example 2: Moderate Study, Regular Review, Moderate Material, Active Recall

Input: Study Time = 20 hours, Review Frequency = Regular, Material Complexity = Moderate, Learning Method = Active Recall

\\[ S_t = \sqrt{S_h / 10} = \sqrt{20 / 10} = 1.414 \\] \\[ R_r = \min\left(100 \cdot \frac{S_t \cdot R_f \cdot M_l}{C_m}, 100\right) = \min\left(100 \cdot \frac{1.414 \cdot 1.0 \cdot 1.0}{1.0}, 100\right) = 100 \ \% \\] \\[ K_d = \min\left(100 \cdot \frac{C_m}{S_t \cdot R_f \cdot M_l}, 100\right) = \min\left(100 \cdot \frac{1.0}{1.414 \cdot 1.0 \cdot 1.0}, 100\right) = 70.71 \ \% \\] \\[ E_s = \min\left(100 \cdot \frac{S_t \cdot M_l}{C_m \cdot (1 / R_f)}, 100\right) = \min\left(100 \cdot \frac{1.414 \cdot 1.0}{1.0 \cdot (1 / 1.0)}, 100\right) = 100 \ \% \\]

Result: Retention Rate: 100%, Knowledge Decay: 70.71%, Study Efficiency: 100%

Example 3: Long Study, Rare Review, Complex Material, Reading

Input: Study Time = 50 hours, Review Frequency = Rare, Material Complexity = Complex, Learning Method = Reading

\\[ S_t = \sqrt{S_h / 10} = \sqrt{50 / 10} = 2.236 \\] \\[ R_r = \min\left(100 \cdot \frac{S_t \cdot R_f \cdot M_l}{C_m}, 100\right) = \min\left(100 \cdot \frac{2.236 \cdot 0.7 \cdot 0.8}{1.2}, 100\right) = 100 \ \% \\] \\[ K_d = \min\left(100 \cdot \frac{C_m}{S_t \cdot R_f \cdot M_l}, 100\right) = \min\left(100 \cdot \frac{1.2}{2.236 \cdot 0.7 \cdot 0.8}, 100\right) = 95.69 \ \% \\] \\[ E_s = \min\left(100 \cdot \frac{S_t \cdot M_l}{C_m \cdot (1 / R_f)}, 100\right) = \min\left(100 \cdot \frac{2.236 \cdot 0.8}{1.2 \cdot (1 / 0.7)}, 100\right) = 87.25 \ \% \\]

Result: Retention Rate: 100%, Knowledge Decay: 95.69%, Study Efficiency: 87.25%

Related To Learning Retention Rate Calculator

  1. Multilingual Vocabulary Retention Tracker
  2. Phonetic Alphabet Practice Score Calculator
  3. Test Anxiety Impact Calculator
  4. Learning Retention Rate Calculator
  5. Group Study Efficiency Calculator
  6. Education Calculators