google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Möbius Function Calculator 

Möbius Function Calculator

Möbius Function Calculator computes \\( \mu(n) \\), the Möbius function value for a positive integer \\( n \\), and plots its values over a range of numbers.

Möbius Function

The Möbius function \\( \mu(n) \\) is defined for a positive integer \\( n \\) as:

\\[ \mu(n) = \begin{cases} 1 & \text{if } n \text{ is square-free with an even number of distinct prime factors}, \\ -1 & \text{if } n \text{ is square-free with an odd number of distinct prime factors}, \\ 0 & \text{if } n \text{ has a squared prime factor}. \end{cases} \\]

Special case: \\( \mu(1) = 1 \\).

Properties:

  • For a prime \\( p \\), \\( \mu(p) = -1 \\).
  • For a prime power \\( p^k \\), \\( \mu(p^k) = 0 \\) if \\( k \geq 2 \\).
  • For \\( n \\) with prime factorization \\( n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k} \\), \\( \mu(n) = 0 \\) if any \\( e_i \geq 2 \\), otherwise \\( \mu(n) = (-1)^k \\).
  • The Möbius function is multiplicative: if \\( \gcd(m, n) = 1 \\), then \\( \mu(mn) = \mu(m) \mu(n) \\).

Examples

Example 1

Input: \\( n = 6 \\)

Prime factorization: \\( 6 = 2 \cdot 3 \\).

Two distinct prime factors (even number), square-free.

\\( \mu(6) = (-1)^2 = 1 \\).

Example 2

Input: \\( n = 8 \\)

Prime factorization: \\( 8 = 2^3 \\).

Has a squared prime factor (\\( 2^3 \\)).

\\( \mu(8) = 0 \\).

Example 3

Input: \\( n = 30 \\)

Prime factorization: \\( 30 = 2 \cdot 3 \cdot 5 \\).

Three distinct prime factors (odd number), square-free.

\\( \mu(30) = (-1)^3 = -1 \\).

Related Calculators

  1. Quadratic Residue Checker
  2. Diophantine Equation Solver
  3. Modular Exponentiation Solver
  4. Stokes Flow Simulator
  5. Determinant Calculator
  6. Mid-Point Calculator
  7. More Math Calculators