google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Modular Exponentiation Solver

Modular Exponentiation Solver

Modular Exponentiation Solver calculates \\( a^b \mod m \\) efficiently using the square-and-multiply algorithm and visualizes results for varying bases or exponents.

Modular Exponentiation Overview

Modular exponentiation computes \\( a^b \mod m \\), where \\( a \\) is the base, \\( b \\) is the exponent, and \\( m \\) is the modulus. It is widely used in cryptography (e.g., RSA) and number theory.

Formula: \\( a^b \mod m \\)

The calculation is performed efficiently using the square-and-multiply algorithm to handle large exponents.

Where:

  • \\( a \\): Base (integer)
  • \\( b \\): Exponent (non-negative integer)
  • \\( m \\): Modulus (positive integer)

Example Calculations

Example 1: Small Numbers
\\( a = 2 \\), \\( b = 10 \\), \\( m = 100 \\)
Result: \\( 2^{10} \mod 100 = 1024 \mod 100 = 24 \\)

Example 2: Cryptographic Range
\\( a = 7 \\), \\( b = 256 \\), \\( m = 13 \\)
Result: \\( 7^{256} \mod 13 = 9 \\) (computed via square-and-multiply)

Example 3: Large Modulus
\\( a = 5 \\), \\( b = 20 \\), \\( m = 1000 \\)
Result: \\( 5^{20} \mod 1000 = 953125 \mod 1000 = 125 \\)

Example 4: Edge Case
\\( a = 3 \\), \\( b = 0 \\), \\( m = 17 \\)
Result: \\( 3^0 \mod 17 = 1 \mod 17 = 1 \\)

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators