Nonlinear Optimization Solver

Nonlinear Optimization Solver uses gradient descent to minimize user-defined functions, showing convergence plots and iteration steps for analysis.

Result:


        
        
        

Formulas Used

For an objective function f(x), gradient descent updates variables to minimize f:

  • Gradient: ∇f(x) = [∂f/∂x₁, ∂f/∂x₂, ...], approximated numerically.
  • Update rule: x[i+1] = x[i] - α * ∇f(x[i]), where α is the learning rate.
  • Stop after max iterations or when |∇f(x)| < 1e-6.

Examples and Solutions

  • Example 1: Function: x^2 + y^2, Initial: [1,1], Steps: 100, α: 0.1
    Solution: Minimum at [0,0], Value: 0
  • Example 2: Function: (x-1)^2 + (y-2)^2, Initial: [0,0], Steps: 100, α: 0.05
    Solution: Minimum at [1,2], Value: 0
  • Example 3: Function: x^2 + 2*y^2, Initial: [2,2], Steps: 100, α: 0.1
    Solution: Minimum at [0,0], Value: 0
  • Example 4: Function: x^2 + y^2 + x*y, Initial: [1,1], Steps: 100, α: 0.05
    Solution: Minimum at [0,0], Value: 0
  • Example 5: Function: (x-3)^2 + (y-4)^2, Initial: [0,0], Steps: 100, α: 0.1
    Solution: Minimum at [3,4], Value: 0

Related Calculators

  1. Quadratic Residue Checker
  2. Diophantine Equation Solver
  3. Modular Exponentiation Solver
  4. Stokes Flow Simulator
  5. Determinant Calculator
  6. Mid-Point Calculator
  7. More Math Calculators
error: Content is protected !!