google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Pauli Matrix Operator Calculator

Pauli Matrix Operator Calculator computes expectation values and applies Pauli operators to a qubit state, aiding quantum mechanics and quantum computing studies.

Formulas Used in Pauli Matrix Operator Calculator

The calculator computes expectation values and applies Pauli operators for a qubit state:

Qubit State:

\\[ |\psi\rangle = a |0\rangle + b |1\rangle \\]

Pauli Matrices:

\\[ \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\]

Expectation Values:

\\[ \langle \sigma_x \rangle = a^* b + b^* a, \quad \langle \sigma_y \rangle = -i (a^* b – b^* a), \quad \langle \sigma_z \rangle = |a|^2 – |b|^2 \\]

Operator Application:

\\[ \sigma_x |\psi\rangle = \begin{pmatrix} b \\ a \end{pmatrix}, \quad \sigma_y |\psi\rangle = \begin{pmatrix} -i b \\ i a \end{pmatrix}, \quad \sigma_z |\psi\rangle = \begin{pmatrix} a \\ -b \end{pmatrix} \\]

Where:

  • \\( a, b \\): Complex coefficients (\\( |a|^2 + |b|^2 = 1 \\))
  • \\( \sigma_x, \sigma_y, \sigma_z \\): Pauli matrices
  • \\( \langle \sigma_i \rangle \\): Expectation value of operator \\( \sigma_i \\)

Example Calculations

Example 1: Eigenstate of \\( \sigma_z \\)

Input: a_r = 1, a_i = 0, b_r = 0, b_i = 0, Operator = \\( \sigma_z \\)

\\[ \langle \sigma_x \rangle = 0, \quad \langle \sigma_y \rangle = 0, \quad \langle \sigma_z \rangle = 1 – 0 = 1 \\] \\[ \sigma_z |\psi\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\]

Result: \\( \langle \sigma_x \rangle = 0 \\), \\( \langle \sigma_y \rangle = 0 \\), \\( \langle \sigma_z \rangle = 1 \\), New State: [1, 0]

Example 2: Eigenstate of \\( \sigma_x \\)

Input: a_r = 0.707, a_i = 0, b_r = 0.707, b_i = 0, Operator = \\( \sigma_x \\)

\\[ \langle \sigma_x \rangle = 2 \cdot 0.707 \cdot 0.707 = 1, \quad \langle \sigma_y \rangle = 0, \quad \langle \sigma_z \rangle = 0.5 – 0.5 = 0 \\] \\[ \sigma_x |\psi\rangle = \begin{pmatrix} 0.707 \\ 0.707 \end{pmatrix} \\]

Result: \\( \langle \sigma_x \rangle = 1 \\), \\( \langle \sigma_y \rangle = 0 \\), \\( \langle \sigma_z \rangle = 0 \\), New State: [0.707, 0.707]

Example 3: General State

Input: a_r = 0.8, a_i = 0, b_r = 0.6, b_i = 0, Operator = \\( \sigma_y \\)

\\[ \langle \sigma_x \rangle = 2 \cdot 0.8 \cdot 0.6 = 0.96, \quad \langle \sigma_y \rangle = 0, \quad \langle \sigma_z \rangle = 0.8^2 – 0.6^2 = 0.28 \\] \\[ \sigma_y |\psi\rangle = \begin{pmatrix} -i \cdot 0.6 \\ i \cdot 0.8 \end{pmatrix} \\]

Result: \\( \langle \sigma_x \rangle = 0.96 \\), \\( \langle \sigma_y \rangle = 0 \\), \\( \langle \sigma_z \rangle = 0.28 \\), New State: [0 – 0.6i, 0.8i]

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators