Perturbation Theory Energy Shift Calculator
Perturbation Theory Energy Shift Calculator computes first-order energy correction for quantum systems, aiding quantum mechanics and atomic physics studies.
Formulas Used in Perturbation Theory Energy Shift Calculator
The calculator uses the following formulas for first-order non-degenerate perturbation theory:
First-Order Energy Correction:
\\[ E_n^{(1)} = \lambda \langle n | V | n \rangle \\]Perturbed Energy:
\\[ E_n = E_n^{(0)} + E_n^{(1)} \\]Where:
- \\( E_n^{(1)} \\): First-order energy correction (eV)
- \\( \lambda \\): Perturbation strength (dimensionless)
- \\( \langle n | V | n \rangle \\): Matrix element of perturbation operator (eV)
- \\( E_n^{(0)} \\): Unperturbed energy (eV)
- \\( E_n \\): Perturbed energy (eV)
Example Calculations
Example 1: Small Perturbation, Low-Energy State
Input: Unperturbed Energy = 10 eV, Perturbation Strength = 0.1, Matrix Element = 0.5 eV
Result: First-Order Energy Correction: 0.05 eV, Perturbed Energy: 10.05 eV
Example 2: Negative Matrix Element
Input: Unperturbed Energy = 5 eV, Perturbation Strength = 0.2, Matrix Element = -1 eV
Result: First-Order Energy Correction: -0.2 eV, Perturbed Energy: 4.8 eV
Example 3: Large Perturbation Strength
Input: Unperturbed Energy = 20 eV, Perturbation Strength = 0.5, Matrix Element = 2 eV
Result: First-Order Energy Correction: 1 eV, Perturbed Energy: 21 eV