Quantum Angular Momentum Coupler CalculatorĀ
Quantum Angular Momentum Coupler Calculator finds total j and m_j values for coupled angular momenta, aiding quantum mechanics and atomic physics studies.
Formulas Used in Quantum Angular Momentum Coupler Calculator
The calculator uses the following formulas for coupling two angular momenta:
Total Angular Momentum Quantum Number:
\\[ j = |j_1 – j_2|, |j_1 – j_2| + 1, \ldots, j_1 + j_2 \\]Magnetic Quantum Number:
\\[ m_j = -j, -j + 1, \ldots, j – 1, j \\]Number of States:
\\[ N_j = 2j + 1 \\] \\[ N_{\text{total}} = (2j_1 + 1)(2j_2 + 1) \\]Where:
- \\( j_1, j_2 \\): Angular momentum quantum numbers
- \\( j \\): Total angular momentum quantum number
- \\( m_j \\): Magnetic quantum number for total angular momentum
- \\( N_j \\): Number of states for a given \\( j \\)
- \\( N_{\text{total}} \\): Total number of states
Example Calculations
Example 1: Electron-Electron Spin Coupling (jā = 1/2, jā = 1/2)
Input: jā = 0.5, jā = 0.5
Result: j = {0, 1}, m_j(j=0) = {0}, m_j(j=1) = {-1, 0, 1}, Number of States: {1, 3}, Total States: 4
Example 2: Spin-Orbit Coupling (jā = 1/2, jā = 1)
Input: jā = 0.5, jā = 1
Result: j = {0.5, 1.5}, m_j(j=0.5) = {-0.5, 0.5}, m_j(j=1.5) = {-1.5, -0.5, 0.5, 1.5}, Number of States: {2, 4}, Total States: 6
Example 3: Higher Spin Coupling (jā = 1, jā = 1.5)
Input: jā = 1, jā = 1.5
Result: j = {0.5, 1.5, 2.5}, m_j(j=0.5) = {-0.5, 0.5}, m_j(j=1.5) = {-1.5, -0.5, 0.5, 1.5}, m_j(j=2.5) = {-2.5, -1.5, -0.5, 0.5, 1.5, 2.5}, Number of States: {2, 4, 6}, Total States: 9