google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Quantum Entanglement Entropy Calculator

Quantum Entanglement Entropy Calculator computes von Neumann entropy for a two-qubit system, aiding quantum information and quantum computing studies.

Formulas Used in Quantum Entanglement Entropy Calculator

The calculator computes the von Neumann entanglement entropy for a two-qubit system:

Two-Qubit State:

\\[ |\psi\rangle = a |00\rangle + b |01\rangle + c |10\rangle + d |11\rangle \\]

Reduced Density Matrix (Trace over Qubit B):

\\[ \rho_A = \begin{pmatrix} |a|^2 + |b|^2 & a c^* + b d^* \\ c a^* + d b^* & |c|^2 + |d|^2 \end{pmatrix} \\]

Von Neumann Entropy:

\\[ S(\rho_A) = -\sum_i \lambda_i \log_2 \lambda_i \\]

Eigenvalues of \\( \rho_A \\):

\\[ \lambda_{\pm} = \frac{1 \pm \sqrt{1 – 4 \det(\rho_A)}}{2} \\] \\[ \det(\rho_A) = (|a|^2 + |b|^2)(|c|^2 + |d|^2) – |a c^* + b d^*|^2 \\]

Where:

  • \\( a, b, c, d \\): Complex coefficients (\\( |a|^2 + |b|^2 + |c|^2 + |d|^2 = 1 \\))
  • \\( \rho_A \\): Reduced density matrix of subsystem A
  • \\( \lambda_i \\): Eigenvalues of \\( \rho_A \\)
  • \\( S \\): Entanglement entropy (bits)

Example Calculations

Example 1: Maximally Entangled State (Bell State)

Input: a_r = 0.707, a_i = 0, b_r = 0, b_i = 0, c_r = 0, c_i = 0, d_r = 0.707, d_i = 0

\\[ \rho_A = \begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix} \\] \\[ \lambda_{\pm} = \{0.5, 0.5\} \\] \\[ S = – (0.5 \cdot \log_2 0.5 + 0.5 \cdot \log_2 0.5) = 1 \, \text{bits} \\]

Result: Reduced Density Matrix: [[0.5, 0], [0, 0.5]], Eigenvalues: [0.5, 0.5], Entropy: 1 bits

Example 2: Separable State

Input: a_r = 1, a_i = 0, b_r = 0, b_i = 0, c_r = 0, c_i = 0, d_r = 0, d_i = 0

\\[ \rho_A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \\] \\[ \lambda_{\pm} = \{1, 0\} \\] \\[ S = – (1 \cdot \log_2 1 + 0 \cdot \log_2 0) = 0 \, \text{bits} \\]

Result: Reduced Density Matrix: [[1, 0], [0, 0]], Eigenvalues: [1, 0], Entropy: 0 bits

Example 3: Partially Entangled State

Input: a_r = 0.8, a_i = 0, b_r = 0, b_i = 0, c_r = 0, c_i = 0, d_r = 0.6, d_i = 0

\\[ \text{Norm} = 0.8^2 + 0.6^2 = 1, \quad a = 0.8, \quad d = 0.6 \\] \\[ \rho_A = \begin{pmatrix} 0.64 & 0.48 \\ 0.48 & 0.36 \end{pmatrix} \\] \\[ \lambda_{\pm} \approx \{0.951, 0.049\} \\] \\[ S \approx – (0.951 \cdot \log_2 0.951 + 0.049 \cdot \log_2 0.049) \approx 0.31 \, \text{bits} \\]

Result: Reduced Density Matrix: [[0.64, 0.48], [0.48, 0.36]], Eigenvalues: [0.951, 0.049], Entropy: 0.31 bits

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators