google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Quantum Harmonic Oscillator Calculator

Quantum Harmonic Oscillator Calculator computes energy, wave function, and probability density for quantum systems based on quantum number and oscillator properties.

Formulas Used in Quantum Harmonic Oscillator Calculator

The calculator uses the following formulas to compute oscillator properties:

Energy Level:

\\[ E_n = \hbar \omega \left( n + \frac{1}{2} \right) \\]

Wave Function Amplitude:

\\[ \psi_n(x) = \left( \frac{m \omega}{\pi \hbar} \right)^{1/4} \frac{1}{\sqrt{2^n n!}} H_n\left( \sqrt{\frac{m \omega}{\hbar}} x \right) e^{-\frac{m \omega x^2}{2 \hbar}} \\]

Probability Density:

\\[ P_n(x) = |\psi_n(x)|^2 \\]

Where:

  • \\( E_n \\): Energy of the \\( n \\)-th level (Joules)
  • \\( \hbar \\): Reduced Planck’s constant (\\( 1.0545718 \times 10^{-34} \, \text{J·s} \\))
  • \\( \omega \\): Angular frequency (rad/s)
  • \\( n \\): Quantum number (integer)
  • \\( \psi_n(x) \\): Wave function amplitude (m\\(^{-1/2}\\))
  • \\( m \\): Oscillator mass (kg)
  • \\( x \\): Position (m)
  • \\( H_n \\): Hermite polynomial of order \\( n \\)
  • \\( P_n(x) \\): Probability density (m\\(^{-1}\\))

Example Calculations

Example 1: Ground State (\\( n = 0 \\)), Small Mass, Moderate Frequency

Input: Quantum Number = 0, Oscillator Mass = 1e-26 kg, Angular Frequency = 1e13 rad/s, Position = 1e-10 m

\\[ E_n = \hbar \omega \left( n + \frac{1}{2} \right) = 1.0545718 \times 10^{-34} \cdot 1 \times 10^{13} \cdot \left( 0 + \frac{1}{2} \right) = 5.272859 \times 10^{-22} \ \text{J} \\] \\[ \psi_0(x) = \left( \frac{m \omega}{\pi \hbar} \right)^{1/4} e^{-\frac{m \omega x^2}{2 \hbar}} = \left( \frac{1 \times 10^{-26} \cdot 1 \times 10^{13}}{\pi \cdot 1.0545718 \times 10^{-34}} \right)^{1/4} e^{-\frac{1 \times 10^{-26} \cdot 1 \times 10^{13} \cdot (1 \times 10^{-10})^2}{2 \cdot 1.0545718 \times 10^{-34}}} \approx 1.235 \times 10^5 \ \text{m}^{-1/2} \\] \\[ P_0(x) = |\psi_0(x)|^2 \approx (1.235 \times 10^5)^2 \approx 1.525 \times 10^{10} \ \text{m}^{-1} \\]

Result: Energy Level: 5.27e-22 J, Wave Function Amplitude: 1.24e5 m\\(^{-1/2}\\), Probability Density: 1.53e10 m\\(^{-1}\\)

Example 2: First Excited State (\\( n = 1 \\)), Moderate Mass, High Frequency

Input: Quantum Number = 1, Oscillator Mass = 5e-26 kg, Angular Frequency = 5e13 rad/s, Position = 5e-11 m

\\[ E_n = \hbar \omega \left( n + \frac{1}{2} \right) = 1.0545718 \times 10^{-34} \cdot 5 \times 10^{13} \cdot \left( 1 + \frac{1}{2} \right) = 7.909289 \times 10^{-21} \ \text{J} \\] \\[ \psi_1(x) = \left( \frac{m \omega}{\pi \hbar} \right)^{1/4} \frac{1}{\sqrt{2}} \cdot 2 \sqrt{\frac{m \omega}{\hbar}} x \cdot e^{-\frac{m \omega x^2}{2 \hbar}} \approx 2.248 \times 10^5 \ \text{m}^{-1/2} \\] \\[ P_1(x) = |\psi_1(x)|^2 \approx (2.248 \times 10^5)^2 \approx 5.053 \times 10^{10} \ \text{m}^{-1} \\]

Result: Energy Level: 7.91e-21 J, Wave Function Amplitude: 2.25e5 m\\(^{-1/2}\\), Probability Density: 5.05e10 m\\(^{-1}\\)

Example 3: Second Excited State (\\( n = 2 \\)), Large Mass, Low Frequency

Input: Quantum Number = 2, Oscillator Mass = 1e-24 kg, Angular Frequency = 1e11 rad/s, Position = 2e-10 m

\\[ E_n = \hbar \omega \left( n + \frac{1}{2} \right) = 1.0545718 \times 10^{-34} \cdot 1 \times 10^{11} \cdot \left( 2 + \frac{1}{2} \right) = 2.6364295 \times 10^{-24} \ \text{J} \\] \\[ \psi_2(x) = \left( \frac{m \omega}{\pi \hbar} \right)^{1/4} \frac{1}{\sqrt{8}} \cdot (4 \left( \sqrt{\frac{m \omega}{\hbar}} x \right)^2 – 2) \cdot e^{-\frac{m \omega x^2}{2 \hbar}} \approx 1.898 \times 10^4 \ \text{m}^{-1/2} \\] \\[ P_2(x) = |\psi_2(x)|^2 \approx (1.898 \times 10^4)^2 \approx 3.603 \times 10^8 \ \text{m}^{-1} \\]

Result: Energy Level: 2.64e-24 J, Wave Function Amplitude: 1.90e4 m\\(^{-1/2}\\), Probability Density: 3.60e8 m\\(^{-1}\\)

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators