Quantum Tunneling Probability Calculator
Quantum Tunneling Probability Calculator computes tunneling probability for a particle through a barrier, aiding quantum mechanics and nanotechnology studies.
Formulas Used in Quantum Tunneling Probability Calculator
The calculator uses the following formulas for a rectangular potential barrier:
Tunneling Probability (E < V_0):
\\[ T = \left[ 1 + \frac{V_0^2}{4 E (V_0 – E)} \sinh^2 \left( \sqrt{\frac{2 m (V_0 – E)}{\hbar^2}} L \right) \right]^{-1} \\]Wavevector inside Barrier:
\\[ \kappa = \sqrt{\frac{2 m (V_0 – E)}{\hbar^2}} \\]Where:
- \\( T \\): Tunneling probability (0 to 1)
- \\( E \\): Particle energy (eV)
- \\( V_0 \\): Barrier height (eV)
- \\( L \\): Barrier width (nm)
- \\( m \\): Particle mass (kg)
- \\( \hbar \\): Reduced Planck’s constant (\\( 1.0545718 \times 10^{-34} \, \text{J·s} \\))
- \\( \kappa \\): Wavevector inside barrier (m\\(^{-1}\\))
Example Calculations
Example 1: Electron, Low Barrier
Input: Particle Energy = 1 eV, Barrier Height = 2 eV, Barrier Width = 1 nm, Particle Mass = 9.109e-31 kg
Result: Tunneling Probability: 13.5%, Wavevector: 5.12e9 m\\(^{-1}\\)
Example 2: Electron, High Barrier
Input: Particle Energy = 1 eV, Barrier Height = 5 eV, Barrier Width = 1 nm, Particle Mass = 9.109e-31 kg
Result: Tunneling Probability: 0.1%, Wavevector: 8.86e9 m\\(^{-1}\\)
Example 3: Electron, Wide Barrier
Input: Particle Energy = 1 eV, Barrier Height = 2 eV, Barrier Width = 2 nm, Particle Mass = 9.109e-31 kg
Result: Tunneling Probability: 0.3%, Wavevector: 5.12e9 m\\(^{-1}\\)