google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Run-of-River Hydropower Calculator

Run-of-River Hydropower Calculator picks turbine and power output with losses and eco-flow from head, flow, efficiencies, and penstock for river energy planning.

Formulas Used in Run-of-River Hydropower Calculator

The calculator uses the following formulas and logic to select a turbine and estimate power:

Usable Flow Rate:

\\[ Q_{\text{usable}} = Q_{\text{total}} – Q_{\text{env}} \\]

Flow Velocity:

\\[ v = \frac{Q_{\text{usable}}}{\pi (D/2)^2} \\]

Head Loss:

\\[ h_{\text{loss}} = \left( f \cdot \frac{L}{D} \cdot \frac{v^2}{2g} \right) + \left( K \cdot \frac{v^2}{2g} \right) \\]

Net Head:

\\[ h_{\text{net}} = h_{\text{gross}} – h_{\text{loss}} \\]

Power Output:

\\[ P = \eta_{\text{turbine}} \cdot \eta_{\text{generator}} \cdot \rho \cdot g \cdot h_{\text{net}} \cdot Q_{\text{usable}} \\]

Power in Kilowatts:

\\[ P_{\text{kW}} = \frac{P}{1000} \\]

Turbine Selection:

  • Kaplan: Head 2–20 m, Usable Flow > 1 m³/s
  • Francis: Head 10–30 m, Usable Flow 0.5–10 m³/s
  • Crossflow: Head 2–30 m, Usable Flow < 1 m³/s

Where:

  • \\( Q_{\text{usable}} \\): Usable flow rate (m³/s)
  • \\( Q_{\text{total}} \\): Total flow rate (m³/s)
  • \\( Q_{\text{env}} \\): Environmental flow (m³/s)
  • \\( v \\): Flow velocity (m/s)
  • \\( D \\): Penstock diameter (m)
  • \\( h_{\text{loss}} \\): Head loss (m)
  • \\( f \\): Friction factor
  • \\( L \\): Penstock length (m)
  • \\( K \\): Minor loss coefficient
  • \\( g \\): Gravitational acceleration (9.81 m/s²)
  • \\( h_{\text{net}} \\): Net head (m)
  • \\( h_{\text{gross}} \\): Gross head (m)
  • \\( P \\): Power output (W)
  • \\( \eta_{\text{turbine}} \\): Turbine efficiency
  • \\( \eta_{\text{generator}} \\): Generator efficiency
  • \\( \rho \\): Water density (kg/m³)

Example Calculations

Example 1: Small ROR Site

Input: Head = 8 m, Total Flow = 2 m³/s, Env. Flow = 0.4 m³/s, Turbine Eff. = 0.85, Generator Eff. = 0.90, Density = 1000 kg/m³, Penstock Length = 150 m, Diameter = 1 m, Friction = 0.02, Minor Loss = 0.5

\\[ Q_{\text{usable}} = 2 – 0.4 = 1.6 \ \text{m³/s} \\] \\[ v = \frac{1.6}{\pi (1/2)^2} \approx 2.04 \ \text{m/s} \\] \\[ h_{\text{loss}} = \left( 0.02 \cdot \frac{150}{1} \cdot \frac{2.04^2}{2 \cdot 9.81} \right) + \left( 0.5 \cdot \frac{2.04^2}{2 \cdot 9.81} \right) \approx 0.84 \ \text{m} \\] \\[ h_{\text{net}} = 8 – 0.84 = 7.16 \ \text{m} \\] \\[ P = 0.85 \cdot 0.90 \cdot 1000 \cdot 9.81 \cdot 7.16 \cdot 1.6 \approx 86005.2 \ \text{W} \\] \\[ P_{\text{kW}} = \frac{86005.2}{1000} \approx 86.01 \ \text{kW} \\]

Turbine: Kaplan (Head 2–20 m, Usable Flow > 1 m³/s)

Result: Turbine = Kaplan, Power = 86.01 kW, Net Head = 7.16 m, Usable Flow = 1.6 m³/s

Example 2: Micro ROR Site

Input: Head = 4 m, Total Flow = 0.6 m³/s, Env. Flow = 0.2 m³/s, Turbine Eff. = 0.75, Generator Eff. = 0.85, Density = 1000 kg/m³, Penstock Length = 50 m, Diameter = 0.4 m, Friction = 0.03, Minor Loss = 0.3

\\[ Q_{\text{usable}} = 0.6 – 0.2 = 0.4 \ \text{m³/s} \\] \\[ v = \frac{0.4}{\pi (0.4/2)^2} \approx 3.18 \ \text{m/s} \\] \\[ h_{\text{loss}} = \left( 0.03 \cdot \frac{50}{0.4} \cdot \frac{3.18^2}{2 \cdot 9.81} \right) + \left( 0.3 \cdot \frac{3.18^2}{2 \cdot 9.81} \right) \approx 2.08 \ \text{m} \\] \\[ h_{\text{net}} = 4 – 2.08 = 1.92 \ \text{m} \\] \\[ P = 0.75 \cdot 0.85 \cdot 1000 \cdot 9.81 \cdot 1.92 \cdot 0.4 \approx 4802.4 \ \text{W} \\] \\[ P_{\text{kW}} = \frac{4802.4}{1000} \approx 4.80 \ \text{kW} \\]

Turbine: Crossflow (Head 2–30 m, Usable Flow < 1 m³/s)

Result: Turbine = Crossflow, Power = 4.80 kW, Net Head = 1.92 m, Usable Flow = 0.4 m³/s

Example 3: Larger ROR Site

Input: Head = 15 m, Total Flow = 5 m³/s, Env. Flow = 1 m³/s, Turbine Eff. = 0.80, Generator Eff. = 0.92, Density = 1000 kg/m³, Penstock Length = 200 m, Diameter = 2 m, Friction = 0.015, Minor Loss = 0.7

\\[ Q_{\text{usable}} = 5 – 1 = 4 \ \text{m³/s} \\] \\[ v = \frac{4}{\pi (2/2)^2} \approx 1.27 \ \text{m/s} \\] \\[ h_{\text{loss}} = \left( 0.015 \cdot \frac{200}{2} \cdot \frac{1.27^2}{2 \cdot 9.81} \right) + \left( 0.7 \cdot \frac{1.27^2}{2 \cdot 9.81} \right) \approx 0.27 \ \text{m} \\] \\[ h_{\text{net}} = 15 – 0.27 = 14.73 \ \text{m} \\] \\[ P = 0.80 \cdot 0.92 \cdot 1000 \cdot 9.81 \cdot 14.73 \cdot 4 \approx 424947.7 \ \text{W} \\] \\[ P_{\text{kW}} = \frac{424947.7}{1000} \approx 424.95 \ \text{kW} \\]

Turbine: Kaplan (Head 2–20 m, Usable Flow > 1 m³/s)

Result: Turbine = Kaplan, Power = 424.95 kW, Net Head = 14.73 m, Usable Flow = 4 m³/s

Related To Run-of-River Hydropower Calculator

  1. Hydropower Water Usage Calculator
  2. Hydro Power Revenue Estimator
  3. Hydropower Head Loss Calculator
  4. Hydropower Turbine Efficiency Calculator
  5. Dam Height Optimization Calculator
  6. More Engineering Related Calculator