Seismic Load Calculator
Seismic Load Calculator finds base shear and story forces with SDC from spectral accelerations, weight, height, and structure type for earthquake design.
Formulas Used in Seismic Load Calculator
The calculator uses the following formulas and logic to estimate seismic loads:
Seismic Base Shear:
\\[ V = C_s \cdot W \\]Seismic Response Coefficient:
\\[ C_s = \frac{S_{DS} \cdot I_e}{R} \\]Constrained by:
\\[ C_s \leq \frac{S_{D1}}{T \cdot R / I_e}, \quad C_s \geq 0.01 \\]Fundamental Period:
\\[ T = C_t \cdot h_n^x \\]Vertical Distribution of Force:
\\[ F_x = C_{vx} \cdot V, \quad C_{vx} = \frac{w_x \cdot h_x^k}{\sum_{i=1}^n w_i \cdot h_i^k} \\]Seismic Design Category (SDC):
- SDC A: \\( S_{DS} < 0.167 \\), \\( S_{D1} < 0.067 \\)
- SDC B: \\( S_{DS} < 0.33 \\), \\( S_{D1} < 0.133 \\)
- SDC C: \\( S_{DS} < 0.5 \\), \\( S_{D1} < 0.2 \\)
- SDC D: \\( S_{DS} < 0.75 \\), \\( S_{D1} < 0.3 \\)
- SDC E/F: Higher values or critical facilities
Where:
- \\( V \\): Base shear force (kN)
- \\( C_s \\): Seismic response coefficient
- \\( W \\): Effective seismic weight (kN)
- \\( S_{DS} \\): Design spectral acceleration, short period (g)
- \\( S_{D1} \\): Design spectral acceleration, 1-second period (g)
- \\( I_e \\): Importance factor
- \\( R \\): Response modification factor
- \\( T \\): Fundamental period (s)
- \\( C_t \\): Period coefficient (0.028 for steel, 0.016 for concrete, 0.02 for others)
- \\( h_n \\): Structure height (m)
- \\( x \\): Period exponent (0.8 for steel/concrete, 0.75 for others)
- \\( F_x \\): Force at level \\( x \\) (kN)
- \\( C_{vx} \\): Vertical distribution factor
- \\( w_x \\): Weight at level \\( x \\) (kN)
- \\( h_x \\): Height of level \\( x \\) (m)
- \\( k \\): Distribution exponent (1 to 2)
Example Calculations
Example 1: Mid-Rise Steel Office Building
Input: \\( S_{DS} = 0.5 \\), \\( S_{D1} = 0.2 \\), \\( I_e = 1.0 \\), \\( R = 8 \\), Height = 20 m, Type = Steel Moment Frame, Weight = 5000 kN, Stories = 5, Story Weight = 1000 kN, Story Height = 4 m
SDC: C (\\( S_{DS} = 0.5 \\), \\( S_{D1} = 0.2 \\))
Result: SDC = C, Base Shear = 255 kN, Top Story Force = 85 kN, Period = 0.49 s
Example 2: Low-Rise Concrete Warehouse
Input: \\( S_{DS} = 0.3 \\), \\( S_{D1} = 0.12 \\), \\( I_e = 1.0 \\), \\( R = 5 \\), Height = 10 m, Type = Concrete Moment Frame, Weight = 3000 kN, Stories = 3, Story Weight = 1000 kN, Story Height = 3.33 m
SDC: B (\\( S_{DS} = 0.3 \\), \\( S_{D1} = 0.12 \\))
Result: SDC = B, Base Shear = 180 kN, Top Story Force = 90 kN, Period = 0.28 s
Example 3: High-Rise Masonry Residential
Input: \\( S_{DS} = 0.7 \\), \\( S_{D1} = 0.28 \\), \\( I_e = 1.25 \\), \\( R = 5 \\), Height = 40 m, Type = Masonry Shear Wall, Weight = 10000 kN, Stories = 10, Story Weight = 1000 kN, Story Height = 4 m
SDC: D (\\( S_{DS} = 0.7 \\), \\( S_{D1} = 0.28 \\))
Result: SDC = D, Base Shear = 860 kN, Top Story Force = 179 kN, Period = 0.81 s