google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Spin Operator Eigenvalues Calculator

Spin Operator Eigenvalues Calculator finds S_z, S^2 eigenvalues and probabilities for quantum spin systems, aiding quantum mechanics and quantum computing studies.

Formulas Used in Spin Operator Eigenvalues Calculator

The calculator uses the following formulas to compute spin operator eigenvalues:

S_z Eigenvalues:

\\[ m_s \hbar, \quad m_s = -s, -s + 1, \ldots, s – 1, s \\]

S^2 Eigenvalue:

\\[ s(s + 1) \hbar^2 \\]

Probabilities for S_z Measurement (s = 1/2):

\\[ P(\uparrow) = |\alpha|^2, \quad P(\downarrow) = |\beta|^2 \\]

Where:

  • \\( m_s \\): Magnetic quantum number
  • \\( s \\): Spin quantum number
  • \\( \hbar \\): Reduced Planck’s constant (\\( 1.0545718 \times 10^{-34} \, \text{J·s} \\))
  • \\( \alpha, \beta \\): Coefficients of spin-up and spin-down states (\\( |\alpha|^2 + |\beta|^2 = 1 \\))
  • \\( P(\uparrow), P(\downarrow) \\): Probabilities for spin-up and spin-down (s = 1/2)

Example Calculations

Example 1: s = 1/2, Equal Superposition

Input: Spin Quantum Number = 0.5, Spin-Up Coefficient = 0.707, Spin-Down Coefficient = 0.707

\\[ S_z \text{ eigenvalues} = \left\{ +\frac{\hbar}{2}, -\frac{\hbar}{2} \right\} = \left\{ +5.272859 \times 10^{-35}, -5.272859 \times 10^{-35} \right\} \ \text{J·s} \\] \\[ S^2 \text{ eigenvalue} = s(s + 1) \hbar^2 = 0.5 \cdot 1.5 \cdot (1.0545718 \times 10^{-34})^2 = 8.337468 \times 10^{-69} \ \text{J}^2\text{·s}^2 \\] \\[ P(\uparrow) = |\alpha|^2 = 0.707^2 = 0.5 \ (50\%) \\] \\[ P(\downarrow) = |\beta|^2 = 0.707^2 = 0.5 \ (50\%) \\]

Result: S_z Eigenvalues: {+5.27e-35, -5.27e-35} J·s, S^2 Eigenvalue: 8.34e-69 J²·s², Probabilities: 50% (up), 50% (down)

Example 2: s = 1, No Probabilities

Input: Spin Quantum Number = 1

\\[ S_z \text{ eigenvalues} = \{-1, 0, 1\} \cdot \hbar = \{-1.0545718 \times 10^{-34}, 0, 1.0545718 \times 10^{-34}\} \ \text{J·s} \\] \\[ S^2 \text{ eigenvalue} = s(s + 1) \hbar^2 = 1 \cdot 2 \cdot (1.0545718 \times 10^{-34})^2 = 2.2233248 \times 10^{-68} \ \text{J}^2\text{·s}^2 \\]

Result: S_z Eigenvalues: {-1.05e-34, 0, 1.05e-34} J·s, S^2 Eigenvalue: 2.22e-68 J²·s²

Example 3: s = 1/2, Spin-Up State

Input: Spin Quantum Number = 0.5, Spin-Up Coefficient = 1, Spin-Down Coefficient = 0

\\[ S_z \text{ eigenvalues} = \left\{ +\frac{\hbar}{2}, -\frac{\hbar}{2} \right\} = \left\{ +5.272859 \times 10^{-35}, -5.272859 \times 10^{-35} \right\} \ \text{J·s} \\] \\[ S^2 \text{ eigenvalue} = 0.5 \cdot 1.5 \cdot (1.0545718 \times 10^{-34})^2 = 8.337468 \times 10^{-69} \ \text{J}^2\text{·s}^2 \\] \\[ P(\uparrow) = |\alpha|^2 = 1^2 = 1 \ (100\%) \\] \\[ P(\downarrow) = |\beta|^2 = 0^2 = 0 \ (0\%) \\]

Result: S_z Eigenvalues: {+5.27e-35, -5.27e-35} J·s, S^2 Eigenvalue: 8.34e-69 J²·s², Probabilities: 100% (up), 0% (down)

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators