Spin Operator Eigenvalues Calculator
Spin Operator Eigenvalues Calculator finds S_z, S^2 eigenvalues and probabilities for quantum spin systems, aiding quantum mechanics and quantum computing studies.
Formulas Used in Spin Operator Eigenvalues Calculator
The calculator uses the following formulas to compute spin operator eigenvalues:
S_z Eigenvalues:
\\[ m_s \hbar, \quad m_s = -s, -s + 1, \ldots, s – 1, s \\]S^2 Eigenvalue:
\\[ s(s + 1) \hbar^2 \\]Probabilities for S_z Measurement (s = 1/2):
\\[ P(\uparrow) = |\alpha|^2, \quad P(\downarrow) = |\beta|^2 \\]Where:
- \\( m_s \\): Magnetic quantum number
- \\( s \\): Spin quantum number
- \\( \hbar \\): Reduced Planck’s constant (\\( 1.0545718 \times 10^{-34} \, \text{J·s} \\))
- \\( \alpha, \beta \\): Coefficients of spin-up and spin-down states (\\( |\alpha|^2 + |\beta|^2 = 1 \\))
- \\( P(\uparrow), P(\downarrow) \\): Probabilities for spin-up and spin-down (s = 1/2)
Example Calculations
Example 1: s = 1/2, Equal Superposition
Input: Spin Quantum Number = 0.5, Spin-Up Coefficient = 0.707, Spin-Down Coefficient = 0.707
Result: S_z Eigenvalues: {+5.27e-35, -5.27e-35} J·s, S^2 Eigenvalue: 8.34e-69 J²·s², Probabilities: 50% (up), 50% (down)
Example 2: s = 1, No Probabilities
Input: Spin Quantum Number = 1
Result: S_z Eigenvalues: {-1.05e-34, 0, 1.05e-34} J·s, S^2 Eigenvalue: 2.22e-68 J²·s²
Example 3: s = 1/2, Spin-Up State
Input: Spin Quantum Number = 0.5, Spin-Up Coefficient = 1, Spin-Down Coefficient = 0
Result: S_z Eigenvalues: {+5.27e-35, -5.27e-35} J·s, S^2 Eigenvalue: 8.34e-69 J²·s², Probabilities: 100% (up), 0% (down)