google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Stokes Flow Simulator

Stokes Flow Simulator

Stokes Flow Simulator calculates drag force on a sphere in low Reynolds number flow using viscosity, radius, and velocity, with velocity profile plots.

Stokes Flow Overview

Stokes flow describes the motion of a sphere in a viscous fluid at low Reynolds number, where drag force is given by Stokes’ law:

Stokes’ Law: \\( F_d = 6 \pi \mu r v \\)

Reynolds Number: \\( Re = \frac{\rho v (2r)}{\mu} \\)

Where:

  • \\(F_d\\): Drag force (N)
  • \\(\mu\\): Fluid viscosity (Pa·s)
  • \\(r\\): Sphere radius (m)
  • \\(v\\): Sphere velocity (m/s)
  • \\(\rho\\): Fluid density (kg/m³)
  • \\(Re\\): Reynolds number (dimensionless, should be \\(< 1\\) for Stokes flow)

Example Calculations

Example 1: Water Droplet in Air
\\(\mu = 0.001 \, \text{Pa·s}\\), \\(r = 1 \, \text{mm}\\), \\(v = 0.01 \, \text{m/s}\\), \\(\rho = 1.225 \, \text{kg/m}^3\\)
Drag Force: \\( F_d = 6 \pi \times 0.001 \times 0.001 \times 0.01 \approx 1.885 \times 10^{-7} \, \text{N} \\)
Reynolds Number: \\( Re = \frac{1.225 \times 0.01 \times (2 \times 0.001)}{0.001} \approx 0.0245 \\)

Example 2: Oil Droplet in Water
\\(\mu = 0.001 \, \text{Pa·s}\\), \\(r = 0.5 \, \text{mm}\\), \\(v = 0.005 \, \text{m/s}\\), \\(\rho = 1000 \, \text{kg/m}^3\\)
Drag Force: \\( F_d = 6 \pi \times 0.001 \times 0.0005 \times 0.005 \approx 4.712 \times 10^{-8} \, \text{N} \\)
Reynolds Number: \\( Re = \frac{1000 \times 0.005 \times (2 \times 0.0005)}{0.001} \approx 5 \\)

Example 3: Particle in Glycerin
\\(\mu = 1.5 \, \text{Pa·s}\\), \\(r = 1 \, \text{mm}\\), \\(v = 0.001 \, \text{m/s}\\), \\(\rho = 1260 \, \text{kg/m}^3\\)
Drag Force: \\( F_d = 6 \pi \times 1.5 \times 0.001 \times 0.001 \approx 2.827 \times 10^{-5} \, \text{N} \\)
Reynolds Number: \\( Re = \frac{1260 \times 0.001 \times (2 \times 0.001)}{1.5} \approx 0.00168 \\)

Example 4: Microbead in Water
\\(\mu = 0.001 \, \text{Pa·s}\\), \\(r = 0.1 \, \text{mm}\\), \\(v = 0.02 \, \text{m/s}\\), \\(\rho = 1000 \, \text{kg/m}^3\\)
Drag Force: \\( F_d = 6 \pi \times 0.001 \times 0.0001 \times 0.02 \approx 3.770 \times 10^{-8} \, \text{N} \\)
Reynolds Number: \\( Re = \frac{1000 \times 0.02 \times (2 \times 0.0001)}{0.001} \approx 4 \\)

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators