Stokes’ Theorem Verifier

Stokes’ Theorem Verifier

The Stokes’ Theorem Verifier verifies Stokes’ theorem for a vector field \( \mathbf{F} \) over a surface \( S \), computing both the surface integral of the curl and the line integral over the boundary, with steps displayed using MathJax.

Stokes’ Theorem Verifier

The Stokes’ Theorem Verifier checks that \( \iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} \) for a vector field \( \mathbf{F} \) and a surface \( S \). Input the vector field, surface parameterization, and parameter bounds to see the computed integrals with MathJax-rendered steps. Results are copyable, with sharing and embedding options for vector calculus students.

Example 1: Stokes’ Theorem for a Plane

Vector Field: \( \mathbf{F} = (y, -x, z) \).
Surface: \( \mathbf{r}(u,v) = (u, v, 0) \), \( u \in [0,1], v \in [0,1] \).
Step 1: Compute the curl.
\( \nabla \times \mathbf{F} = (-1, -1, -2) \).
Step 2: Surface integral.
\( \iint_S (\nabla \times \mathbf{F}) \cdot (\mathbf{r}_u \times \mathbf{r}_v) \, du \, dv = \int_0^1 \int_0^1 -2 \, du \, dv = -2 \).
Step 3: Line integral over boundary.
\( \oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = -2 \).
Step 4: Conclusion.
Both integrals equal \(-2\), verifying Stokes’ theorem.

Example 2: Stokes’ Theorem for a Hemisphere

Vector Field: \( \mathbf{F} = (-y, x, 0) \).
Surface: \( \mathbf{r}(\theta,\phi) = (\sin\theta \cos\phi, \sin\theta \sin\phi, \cos\theta) \), \( \theta \in [0,\pi/2], \phi \in [0,2\pi] \).
Step 1: Compute the curl.
\( \nabla \times \mathbf{F} = (0, 0, 2) \).
Step 2: Surface integral.
\( \iint_S (\nabla \times \mathbf{F}) \cdot (\mathbf{r}_\theta \times \mathbf{r}_\phi) \, d\theta \, d\phi = 2\pi \).
Step 3: Line integral over boundary.
\( \oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = 2\pi \).
Step 4: Conclusion.
Both integrals equal \( 2\pi \), verifying Stokes’ theorem.

Related Calculators

  1. Quadratic Residue Checker
  2. Diophantine Equation Solver
  3. Modular Exponentiation Solver
  4. Stokes Flow Simulator
  5. Determinant Calculator
  6. Mid-Point Calculator
  7. More Math Calculators
error: Content is protected !!