google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Welcome to CalcPeak

7000+ Free Online Calculators for Math, Finance, and Health

Explore Calculators

Dam Height Optimization Calculator

Dam Height Optimization Calculator estimates the optimal dam height to maximize net annual revenue from a hydropower plant, balancing power output against construction costs, with a detailed breakdown and step-by-step calculations.

Formulas Used in Dam Height Optimization Calculator

The calculator uses the following formulas to optimize dam height:

Power Output:

\\[ P = \eta \cdot \rho \cdot g \cdot Q \cdot h \\]

Annual Energy Production:

\\[ E = \frac{P}{1000} \cdot 24 \cdot D \\]

Gross Annual Revenue:

\\[ R_{\text{gross}} = E \cdot r \\]

Annualized Construction Cost:

\\[ C = \frac{c_0 + c_1 h + c_2 h^2}{L} \\]

Net Annual Revenue:

\\[ R_{\text{net}} = R_{\text{gross}} – C \\]

Optimal Dam Height:

\\[ h_{\text{opt}} = \frac{\frac{\eta \cdot \rho \cdot g \cdot Q \cdot 24 \cdot D \cdot r}{1000} – \frac{c_1}{L}}{\frac{2 c_2}{L}} \\]

Where:

  • \\( P \\): Power output (W)
  • \\( \eta \\): Turbine efficiency (0 to 1)
  • \\( \rho \\): Water density (1000 kg/m³)
  • \\( g \\): Gravitational acceleration (9.81 m/s²)
  • \\( Q \\): Flow rate (m³/s)
  • \\( h \\): Dam height (gross head, m)
  • \\( E \\): Energy (kWh/year)
  • \\( D \\): Operating days per year
  • \\( R_{\text{gross}} \\): Gross revenue ($/year)
  • \\( r \\): Electricity price ($/kWh)
  • \\( C \\): Annualized construction cost ($/year)
  • \\( c_0 \\): Base construction cost ($)
  • \\( c_1 \\): Linear cost coefficient ($/m)
  • \\( c_2 \\): Quadratic cost coefficient ($/m²)
  • \\( L \\): Project lifetime (years)
  • \\( R_{\text{net}} \\): Net revenue ($/year)
  • \\( h_{\text{opt}} \\): Optimal dam height (m)

Example Calculations

Example 1: Small-Scale Dam

Input: Flow Rate = 1 m³/s, Efficiency = 0.8, Days = 365, Price = $0.15/kWh, Base Cost = $500,000, Linear Cost = $20,000/m, Quadratic Cost = $500/m², Lifetime = 50 years

\\[ h_{\text{opt}} = \frac{\frac{0.8 \cdot 1000 \cdot 9.81 \cdot 1 \cdot 24 \cdot 365 \cdot 0.15}{1000} – \frac{20000}{50}}{\frac{2 \cdot 500}{50}} \approx 51.74 \ \text{m} \\] \\[ P = 0.8 \cdot 1000 \cdot 9.81 \cdot 1 \cdot 51.74 \approx 406,390 \ \text{W} \\] \\[ E = \frac{406390}{1000} \cdot 24 \cdot 365 \approx 3,559,796 \ \text{kWh/year} \\] \\[ R_{\text{gross}} = 3559796 \cdot 0.15 \approx 533,969 \ \$/\text{year} \\] \\[ C = \frac{500000 + 20000 \cdot 51.74 + 500 \cdot 51.74^2}{50} \approx 47,387 \ \$/\text{year} \\] \\[ R_{\text{net}} = 533969 – 47387 \approx 486,582 \ \$/\text{year} \\]

Result: Optimal Height = 51.74 m, Power = 406,390 W, Energy = 3,559,796 kWh/year, Gross Revenue = $533,969/year, Cost = $47,387/year, Net Revenue = $486,582/year

Example 2: Medium-Scale Dam

Input: Flow Rate = 2.265 m³/s, Efficiency = 0.85, Days = 200, Price = $0.12/kWh, Base Cost = $1,000,000, Linear Cost = $50,000/m, Quadratic Cost = $1,000/m², Lifetime = 40 years

\\[ h_{\text{opt}} = \frac{\frac{0.85 \cdot 1000 \cdot 9.81 \cdot 2.265 \cdot 24 \cdot 200 \cdot 0.12}{1000} – \frac{50000}{40}}{\frac{2 \cdot 1000}{40}} \approx 21.18 \ \text{m} \\] \\[ P = 0.85 \cdot 1000 \cdot 9.81 \cdot 2.265 \cdot 21.18 \approx 400,159 \ \text{W} \\] \\[ E = \frac{400159}{1000} \cdot 24 \cdot 200 \approx 1,920,763 \ \text{kWh/year} \\] \\[ R_{\text{gross}} = 1920763 \cdot 0.12 \approx 230,492 \ \$/\text{year} \\] \\[ C = \frac{1000000 + 50000 \cdot 21.18 + 1000 \cdot 21.18^2}{40} \approx 62,240 \ \$/\text{year} \\] \\[ R_{\text{net}} = 230492 – 62240 \approx 168,252 \ \$/\text{year} \\]

Result: Optimal Height = 21.18 m, Power = 400,159 W, Energy = 1,920,763 kWh/year, Gross Revenue = $230,492/year, Cost = $62,240/year, Net Revenue = $168,252/year

Example 3: Large-Scale Dam

Input: Flow Rate = 11.992 m³/s, Efficiency = 0.9, Days = 300, Price = $0.08/kWh, Base Cost = $5,000,000, Linear Cost = $100,000/m, Quadratic Cost = $2,000/m², Lifetime = 60 years

\\[ h_{\text{opt}} = \frac{\frac{0.9 \cdot 1000 \cdot 9.81 \cdot 11.992 \cdot 24 \cdot 300 \cdot 0.08}{1000} – \frac{100000}{60}}{\frac{2 \cdot 2000}{60}} \approx 43.66 \ \text{m} \\] \\[ P = 0.9 \cdot 1000 \cdot 9.81 \cdot 11.992 \cdot 43.66 \approx 4,625,685 \ \text{W} \\] \\[ E = \frac{4625685}{1000} \cdot 24 \cdot 300 \approx 33,304,932 \ \text{kWh/year} \\] \\[ R_{\text{gross}} = 33304932 \cdot 0.08 \approx 2,664,395 \ \$/\text{year} \\] \\[ C = \frac{5000000 + 100000 \cdot 43.66 + 2000 \cdot 43.66^2}{60} \approx 152,844 \ \$/\text{year} \\] \\[ R_{\text{net}} = 2664395 – 152844 \approx 2,511,551 \ \$/\text{year} \\]

Result: Optimal Height = 43.66 m, Power = 4,625,685 W, Energy = 33,304,932 kWh/year, Gross Revenue = $2,664,395/year, Cost = $152,844/year, Net Revenue = $2,511,551/year

Related To Dam Height Optimization Calculator

  1. Hydropower Water Usage Calculator
  2. Hydro Power Revenue Estimator
  3. Hydropower Head Loss Calculator
  4. Hydropower Turbine Efficiency Calculator
  5. Dam Height Optimization Calculator
  6. More Engineering Related Calculator
Exit mobile version