google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Welcome to CalcPeak

7000+ Free Online Calculators for Math, Finance, and Health

Explore Calculators

Langevin Dynamics Simulator

Langevin Dynamics Simulator models particle motion under friction and random forces, plotting position and computing MSD.

Formulas Used in Langevin Dynamics Simulator

The simulator models a particle’s motion using the Langevin equation:

Langevin Equation:

\\[ m \frac{d^2x}{dt^2} = -\gamma \frac{dx}{dt} + F_{\text{random}} \\]

Random Force:

\\[ \langle F_{\text{random}}(t) \rangle = 0, \quad \langle F_{\text{random}}(t) F_{\text{random}}(t’) \rangle = 2 \gamma k_B T \delta(t – t’) \\]

Mean-Squared Displacement (MSD):

\\[ \text{MSD} = \langle (x(t) – x(0))^2 \rangle \\]

Average Kinetic Energy:

\\[ \langle E_k \rangle = \frac{1}{2} m \langle v^2 \rangle \\]

Where:

  • \\(m\\): Particle mass (kg)
  • \\(\gamma\\): Friction coefficient (kg/s)
  • \\(F_{\text{random}}\\): Random force (N)
  • \\(k_B\\): Boltzmann constant (\\(1.380649 \times 10^{-23} \, \text{J/K}\\))
  • \\(T\\): Temperature (K)
  • \\(x\\): Position (m)
  • \\(v\\): Velocity (m/s)
  • \\(\Delta t\\): Time step (s)
  • \\(t_{\text{max}}\\): Total simulation time (s)

Example Calculation

Example: \\(m = 1 \times 10^{-26} \, \text{kg}, \gamma = 1 \times 10^{-12} \, \text{kg/s}, T = 300 \, \text{K}, \Delta t = 0.001 \, \text{s}, t_{\text{max}} = 1 \, \text{s}\\)

Runs Euler-Maruyama integration to compute position, velocity, MSD, and average kinetic energy.

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators
Exit mobile version