google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Welcome to CalcPeak

7000+ Free Online Calculators for Math, Finance, and Health

Explore Calculators

Lense-Thirring Precession Calculator

Lense-Thirring Precession Calculator finds orbital precession rate due to frame-dragging, with a plot.

Formulas Used in Lense-Thirring Precession Calculator

The calculator computes the Lense-Thirring precession rate for an orbit around a rotating body:

Precession Angular Velocity:

\\[ \Omega_{\text{LT}} = \frac{2 G J}{c^2 a^3 (1 – e^2)^{3/2}} \\]

Precession Period:

\\[ T_{\text{LT}} = \frac{2\pi}{\Omega_{\text{LT}}} \\]

Where:

  • \\(\Omega_{\text{LT}}\\): Precession angular velocity (rad/s)
  • \\(G\\): Gravitational constant (\\(6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2}\\))
  • \\(J\\): Angular momentum of the primary (kg·m²/s)
  • \\(c\\): Speed of light (\\(2.99792458 \times 10^8 \, \text{m/s}\\))
  • \\(a\\): Semi-major axis (m)
  • \\(e\\): Orbital eccentricity (dimensionless, \\(0 \leq e < 1\\))
  • \\(T_{\text{LT}}\\): Precession period (s)

Example Calculation

Example: Earth (\\(M = 5.972 \times 10^{24} \, \text{kg}, J = 7.072 \times 10^{33} \, \text{kg·m}^2/\text{s}, a = 7000 \, \text{km}, e = 0\\))

\\[ \Omega_{\text{LT}} = \frac{2 \times 6.67430 \times 10^{-11} \times 7.072 \times 10^{33}}{(2.99792458 \times 10^8)^2 \times (7000 \times 10^3)^3} \approx 1.03 \times 10^{-14} \, \text{rad/s} \approx 0.019 \, \text{deg/yr} \\] \\[ T_{\text{LT}} = \frac{2\pi}{1.03 \times 10^{-14}} \approx 1.92 \times 10^6 \, \text{years} \\]

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators