google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Welcome to CalcPeak

7000+ Free Online Calculators for Math, Finance, and Health

Explore Calculators

 Maxwell’s Equations Solver

Maxwell’s Equations Solver computes electric and magnetic fields of a plane wave in free space, visualizing their oscillations for electromagnetism studies.

Formulas Used in Maxwell’s Equations Solver

The solver uses the following formulas for a plane wave in free space:

Maxwell’s Equations:

\\[ \nabla \cdot \mathbf{E} = 0, \quad \nabla \cdot \mathbf{B} = 0 \\] \\[ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \\]

Plane Wave Solutions:

\\[ \mathbf{E} = E_0 \cos(kz – \omega t) \hat{x} \\] \\[ \mathbf{B} = \frac{E_0}{c} \cos(kz – \omega t) \hat{y} \\]

Wave Parameters:

\\[ k = \frac{2\pi}{\lambda}, \quad \omega = kc, \quad c = \frac{1}{\sqrt{\mu_0 \epsilon_0}} \\]

Where:

  • \\( \mu_0 = 4\pi \times 10^{-7} \, \text{T·m/A} \\): Permeability of free space
  • \\( \epsilon_0 = 8.854187817 \times 10^{-12} \, \text{F/m} \\): Permittivity of free space
  • \\( c \approx 2.99792458 \times 10^8 \, \text{m/s} \\): Speed of light
  • \\( E_0 \\): Electric field amplitude (V/m)
  • \\( \lambda \\): Wavelength (m)
  • \\( k \\): Wave number (rad/m)
  • \\( \omega \\): Angular frequency (rad/s)
  • \\( z \\): Position (m)
  • \\( t \\): Time (s)
  • \\( \mathbf{E}, \mathbf{B} \\): Electric and magnetic fields

Example Calculations

Example 1: Standard Case

Input: E₀ = 100 V/m, λ = 0.01 m, z = 0 m, t = 1e-10 s

\\[ k = \frac{2\pi}{0.01} \approx 628.318 \, \text{rad/m} \\] \\[ \omega = 628.318 \cdot 2.99792458 \times 10^8 \approx 1.884 \times 10^{11} \, \text{rad/s} \\] \\[ E_x = 100 \cdot \cos(628.318 \cdot 0 – 1.884 \times 10^{11} \cdot 1 \times 10^{-10}) \approx 80.901 \, \text{V/m} \\] \\[ B_y = \frac{100}{2.99792458 \times 10^8} \cdot \cos(628.318 \cdot 0 – 1.884 \times 10^{11} \cdot 1 \times 10^{-10}) \approx 2.699 \times 10^{-7} \, \text{T} \\]

Result: E_x = 80.901 V/m, B_y = 2.699e-7 T

Example 2: Higher Amplitude

Input: E₀ = 500 V/m, λ = 0.01 m, z = 0 m, t = 1e-10 s

\\[ E_x \approx 404.508 \, \text{V/m}, \quad B_y \approx 1.349 \times 10^{-6} \, \text{T} \\]

Result: E_x = 404.508 V/m, B_y = 1.349e-6 T

Example 3: Different Wavelength

Input: E₀ = 100 V/m, λ = 0.05 m, z = 0 m, t = 1e-10 s

\\[ k = \frac{2\pi}{0.05} \approx 125.664 \, \text{rad/m} \\] \\[ \omega \approx 3.769 \times 10^{10} \, \text{rad/s} \\] \\[ E_x \approx 99.294 \, \text{V/m}, \quad B_y \approx 3.311 \times 10^{-7} \, \text{T} \\]

Result: E_x = 99.294 V/m, B_y = 3.311e-7 T

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators
Exit mobile version