google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Welcome to CalcPeak

7000+ Free Online Calculators for Math, Finance, and Health

Explore Calculators

Penstock Loss Calculator

Penstock Loss Calculator estimates frictional head loss in a hydropower penstock using the Darcy-Weisbach equation, supporting single or multiple flow rates, with detailed calculations and results table.

Formulas Used in Penstock Loss Calculator

The calculator uses the following formulas to estimate head loss:

Flow Velocity:

\\[ v = \frac{Q}{\frac{\pi D^2}{4}} \\]

Reynolds Number:

\\[ Re = \frac{v D}{\nu} \\]

Friction Factor (approximated):

\\[ f \approx 0.0055 \left(1 + \left(20000 \frac{k}{D} + \frac{10^6}{Re}\right)^{1/3}\right) \\]

Head Loss:

\\[ h_f = f \frac{L}{D} \frac{v^2}{2g} \\]

Percentage Head Loss:

\\[ h_{\text{percent}} = \frac{h_f}{h_{\text{gross}}} \cdot 100 \\]

Where:

  • \\( v \\): Flow velocity (m/s)
  • \\( Q \\): Flow rate (m³/s)
  • \\( D \\): Pipe diameter (m)
  • \\( Re \\): Reynolds number
  • \\( \nu \\): Kinematic viscosity (m²/s)
  • \\( f \\): Darcy friction factor
  • \\( k \\): Pipe roughness (m)
  • \\( h_f \\): Head loss (m)
  • \\( L \\): Pipe length (m)
  • \\( g \\): Gravitational acceleration (9.81 m/s²)
  • \\( h_{\text{gross}} \\): Gross head (m)
  • \\( h_{\text{percent}} \\): Percentage head loss (%)

Example Calculations

Example 1: Small Flow

Input: Flow = 0.5 m³/s, Pipe Diameter = 0.3 m, Pipe Length = 50 m, Pipe Roughness = 0.00015 m, Gross Head = 10 m, Kinematic Viscosity = 0.000001 m²/s

\\[ v = \frac{0.5}{\frac{\pi \cdot 0.3^2}{4}} \approx 7.073 \ \text{m/s} \\] \\[ Re = \frac{7.073 \cdot 0.3}{0.000001} \approx 2,121,900 \\] \\[ f \approx 0.0055 \left(1 + \left(20000 \cdot \frac{0.00015}{0.3} + \frac{10^6}{2121900}\right)^{1/3}\right) \approx 0.0173 \\] \\[ h_f = 0.0173 \cdot \frac{50}{0.3} \cdot \frac{7.073^2}{2 \cdot 9.81} \approx 7.36 \ \text{m} \\] \\[ h_{\text{percent}} = \frac{7.36}{10} \cdot 100 \approx 73.60\% \\]

Result: Velocity = 7.073 m/s, Reynolds Number = 2,121,900, Friction Factor = 0.0173, Head Loss = 7.36 m, Percentage Head Loss = 73.60%

Example 2: Medium Flow

Input: Flow = 2.0 m³/s, Pipe Diameter = 0.5 m, Pipe Length = 100 m, Pipe Roughness = 0.00015 m, Gross Head = 50 m, Kinematic Viscosity = 0.000001 m²/s

\\[ v = \frac{2.0}{\frac{\pi \cdot 0.5^2}{4}} \approx 10.186 \ \text{m/s} \\] \\[ Re = \frac{10.186 \cdot 0.5}{0.000001} \approx 5,093,000 \\] \\[ f \approx 0.0055 \left(1 + \left(20000 \cdot \frac{0.00015}{0.5} + \frac{10^6}{5093000}\right)^{1/3}\right) \approx 0.0162 \\] \\[ h_f = 0.0162 \cdot \frac{100}{0.5} \cdot \frac{10.186^2}{2 \cdot 9.81} \approx 17.14 \ \text{m} \\] \\[ h_{\text{percent}} = \frac{17.14}{50} \cdot 100 \approx 34.28\% \\]

Result: Velocity = 10.186 m/s, Reynolds Number = 5,093,000, Friction Factor = 0.0162, Head Loss = 17.14 m, Percentage Head Loss = 34.28%

Example 3: Multiple Flows

Input: Flows = 3.0, 2.0, 1.0 m³/s, Pipe Diameter = 0.8 m, Pipe Length = 200 m, Pipe Roughness = 0.00015 m, Gross Head = 100 m, Kinematic Viscosity = 0.000001 m²/s

For \\( Q = 3.0 \\):

\\[ v = \frac{3.0}{\frac{\pi \cdot 0.8^2}{4}} \approx 5.968 \ \text{m/s} \\] \\[ Re = \frac{5.968 \cdot 0.8}{0.000001} \approx 4,774,600 \\] \\[ f \approx 0.0055 \left(1 + \left(20000 \cdot \frac{0.00015}{0.8} + \frac{10^6}{4774600}\right)^{1/3}\right) \approx 0.0159 \\] \\[ h_f = 0.0159 \cdot \frac{200}{0.8} \cdot \frac{5.968^2}{2 \cdot 9.81} \approx 7.22 \ \text{m} \\] \\[ h_{\text{percent}} = \frac{7.22}{100} \cdot 100 \approx 7.22\% \\]

(Similarly for \\( Q = 2.0 \\), \\( Q = 1.0 \\))

Result: For \\( Q = 3.0 \\): Head Loss = 7.22 m, 7.22%; \\( Q = 2.0 \\): Head Loss = 3.21 m, 3.21%; \\( Q = 1.0 \\): Head Loss = 0.80 m, 0.80%

Related Calculator

  1. Hydropower Water Usage Calculator
  2. Hydro Power Revenue Estimator
  3. Hydropower Head Loss Calculator
  4. Hydropower Turbine Efficiency Calculator
  5. Dam Height Optimization Calculator
  6. More Engineering Related Calculator
Exit mobile version