Rabi Oscillation Simulator
Rabi Oscillation Simulator models a two-level quantum system’s probability evolution under a resonant field, visualizing oscillations for quantum computing studies.
Formulas Used in Rabi Oscillation Simulator
The simulator uses the following formulas for a two-level system under resonant driving:
Time-Evolved State (Initial |0⟩):
\\[ |\psi(t)\rangle = \cos\left(\frac{\Omega t}{2}\right) |0\rangle – i \sin\left(\frac{\Omega t}{2}\right) |1\rangle \\]Excited State Probability:
\\[ P_{|1\rangle}(t) = \sin^2\left(\frac{\Omega t}{2}\right) \\]Mixed Initial State:
\\[ P_{|1\rangle}(t) = P_{|0\rangle}(0) \sin^2\left(\frac{\Omega t}{2}\right) + P_{|1\rangle}(0) \cos^2\left(\frac{\Omega t}{2}\right) \\]Where:
- \\( \Omega \\): Rabi frequency (rad/s)
- \\( t \\): Time (s)
- \\( P_{|0\rangle}(0) \\): Initial probability of state |0⟩
- \\( P_{|1\rangle}(0) \\): Initial probability of state |1⟩ (\\( = 1 – P_{|0\rangle}(0) \\))
- \\( P_{|1\rangle}(t) \\): Probability of state |1⟩ at time \\( t \\)
Example Calculations
Example 1: Standard Case
Input: Rabi Frequency = 1 MHz, Time Range = 10 ns, Initial |0⟩ Probability = 1
Result: Excited State Probability at t = 10 ns: 0.000025
Example 2: Faster Oscillation
Input: Rabi Frequency = 5 MHz, Time Range = 10 ns, Initial |0⟩ Probability = 1
Result: Excited State Probability at t = 10 ns: 0.000625
Example 3: Mixed Initial State
Input: Rabi Frequency = 1 MHz, Time Range = 10 ns, Initial |0⟩ Probability = 0.5
Result: Excited State Probability at t = 10 ns: 0.5