google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Welcome to CalcPeak

7000+ Free Online Calculators for Math, Finance, and Health

Explore Calculators

Seismic Load Calculator

Seismic Load Calculator finds base shear and story forces with SDC from spectral accelerations, weight, height, and structure type for earthquake design.

Formulas Used in Seismic Load Calculator

The calculator uses the following formulas and logic to estimate seismic loads:

Seismic Base Shear:

\\[ V = C_s \cdot W \\]

Seismic Response Coefficient:

\\[ C_s = \frac{S_{DS} \cdot I_e}{R} \\]

Constrained by:

\\[ C_s \leq \frac{S_{D1}}{T \cdot R / I_e}, \quad C_s \geq 0.01 \\]

Fundamental Period:

\\[ T = C_t \cdot h_n^x \\]

Vertical Distribution of Force:

\\[ F_x = C_{vx} \cdot V, \quad C_{vx} = \frac{w_x \cdot h_x^k}{\sum_{i=1}^n w_i \cdot h_i^k} \\]

Seismic Design Category (SDC):

  • SDC A: \\( S_{DS} < 0.167 \\), \\( S_{D1} < 0.067 \\)
  • SDC B: \\( S_{DS} < 0.33 \\), \\( S_{D1} < 0.133 \\)
  • SDC C: \\( S_{DS} < 0.5 \\), \\( S_{D1} < 0.2 \\)
  • SDC D: \\( S_{DS} < 0.75 \\), \\( S_{D1} < 0.3 \\)
  • SDC E/F: Higher values or critical facilities

Where:

  • \\( V \\): Base shear force (kN)
  • \\( C_s \\): Seismic response coefficient
  • \\( W \\): Effective seismic weight (kN)
  • \\( S_{DS} \\): Design spectral acceleration, short period (g)
  • \\( S_{D1} \\): Design spectral acceleration, 1-second period (g)
  • \\( I_e \\): Importance factor
  • \\( R \\): Response modification factor
  • \\( T \\): Fundamental period (s)
  • \\( C_t \\): Period coefficient (0.028 for steel, 0.016 for concrete, 0.02 for others)
  • \\( h_n \\): Structure height (m)
  • \\( x \\): Period exponent (0.8 for steel/concrete, 0.75 for others)
  • \\( F_x \\): Force at level \\( x \\) (kN)
  • \\( C_{vx} \\): Vertical distribution factor
  • \\( w_x \\): Weight at level \\( x \\) (kN)
  • \\( h_x \\): Height of level \\( x \\) (m)
  • \\( k \\): Distribution exponent (1 to 2)

Example Calculations

Example 1: Mid-Rise Steel Office Building

Input: \\( S_{DS} = 0.5 \\), \\( S_{D1} = 0.2 \\), \\( I_e = 1.0 \\), \\( R = 8 \\), Height = 20 m, Type = Steel Moment Frame, Weight = 5000 kN, Stories = 5, Story Weight = 1000 kN, Story Height = 4 m

\\[ T = 0.028 \cdot 20^{0.8} \approx 0.49 \ \text{s} \\] \\[ C_s = \frac{0.5 \cdot 1.0}{8} = 0.0625 \\] \\[ C_s \leq \frac{0.2}{0.49 \cdot 8 / 1.0} \approx 0.051, \quad C_s = 0.051 \\] \\[ V = 0.051 \cdot 5000 \approx 255 \ \text{kN} \\] \\[ k = 1 \ (T \leq 0.5) \\] \\[ C_{v5} = \frac{1000 \cdot (4 \cdot 5)^1}{\sum (1000 \cdot (4i)^1)} \approx 0.333, \quad F_5 = 0.333 \cdot 255 \approx 85 \ \text{kN} \\]

SDC: C (\\( S_{DS} = 0.5 \\), \\( S_{D1} = 0.2 \\))

Result: SDC = C, Base Shear = 255 kN, Top Story Force = 85 kN, Period = 0.49 s

Example 2: Low-Rise Concrete Warehouse

Input: \\( S_{DS} = 0.3 \\), \\( S_{D1} = 0.12 \\), \\( I_e = 1.0 \\), \\( R = 5 \\), Height = 10 m, Type = Concrete Moment Frame, Weight = 3000 kN, Stories = 3, Story Weight = 1000 kN, Story Height = 3.33 m

\\[ T = 0.016 \cdot 10^{0.8} \approx 0.28 \ \text{s} \\] \\[ C_s = \frac{0.3 \cdot 1.0}{5} = 0.06 \\] \\[ C_s \leq \frac{0.12}{0.28 \cdot 5 / 1.0} \approx 0.086, \quad C_s = 0.06 \\] \\[ V = 0.06 \cdot 3000 \approx 180 \ \text{kN} \\] \\[ k = 1 \ (T \leq 0.5) \\] \\[ C_{v3} = \frac{1000 \cdot (3.33 \cdot 3)^1}{\sum (1000 \cdot (3.33i)^1)} \approx 0.5, \quad F_3 = 0.5 \cdot 180 \approx 90 \ \text{kN} \\]

SDC: B (\\( S_{DS} = 0.3 \\), \\( S_{D1} = 0.12 \\))

Result: SDC = B, Base Shear = 180 kN, Top Story Force = 90 kN, Period = 0.28 s

Example 3: High-Rise Masonry Residential

Input: \\( S_{DS} = 0.7 \\), \\( S_{D1} = 0.28 \\), \\( I_e = 1.25 \\), \\( R = 5 \\), Height = 40 m, Type = Masonry Shear Wall, Weight = 10000 kN, Stories = 10, Story Weight = 1000 kN, Story Height = 4 m

\\[ T = 0.02 \cdot 40^{0.75} \approx 0.81 \ \text{s} \\] \\[ C_s = \frac{0.7 \cdot 1.25}{5} = 0.175 \\] \\[ C_s \leq \frac{0.28}{0.81 \cdot 5 / 1.25} \approx 0.086, \quad C_s = 0.086 \\] \\[ V = 0.086 \cdot 10000 \approx 860 \ \text{kN} \\] \\[ k = 1.12 \ (T = 0.81) \\] \\[ C_{v10} = \frac{1000 \cdot (4 \cdot 10)^{1.12}}{\sum (1000 \cdot (4i)^{1.12})} \approx 0.208, \quad F_{10} = 0.208 \cdot 860 \approx 179 \ \text{kN} \\]

SDC: D (\\( S_{DS} = 0.7 \\), \\( S_{D1} = 0.28 \\))

Result: SDC = D, Base Shear = 860 kN, Top Story Force = 179 kN, Period = 0.81 s

Related To Seismic Load Calculator

  1. Hydropower Water Usage Calculator
  2. Hydro Power Revenue Estimator
  3. Hydropower Head Loss Calculator
  4. Hydropower Turbine Efficiency Calculator
  5. Dam Height Optimization Calculator
  6. More Engineering Related Calculator