google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Welcome to CalcPeak

7000+ Free Online Calculators for Math, Finance, and Health

Explore Calculators

Virial Theorem Calculator 

Virial Theorem Calculator computes kinetic and potential energies for a particle in a potential, verifying the virial theorem.

Formulas Used in Virial Theorem Calculator

The calculator applies the virial theorem for a single particle:

Virial Theorem:

\\[ \langle T \rangle = -\frac{1}{2} \sum_i \langle \mathbf{r}_i \cdot \mathbf{F}_i \rangle \\]

Harmonic Potential:

\\[ V = \frac{1}{2} k r^2, \quad \mathbf{F} = -k \mathbf{r}, \quad \langle T \rangle = \langle V \rangle = \frac{3}{2} k_B T \\]

Gravitational Potential:

\\[ V = -\frac{G M m}{r}, \quad \mathbf{F} = -\frac{G M m}{r^2} \hat{r}, \quad \langle T \rangle = -\frac{1}{2} \langle V \rangle \\]

Where:

  • \\(\langle T \rangle\\): Average kinetic energy (J)
  • \\(\langle V \rangle\\): Average potential energy (J)
  • \\(k_B\\): Boltzmann constant (\\(1.380649 \times 10^{-23} \, \text{J/K}\\))
  • \\(T\\): Temperature (K)
  • \\(k\\): Spring constant (N/m)
  • \\(G\\): Gravitational constant (\\(6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2}\\))
  • \\(M\\): Central mass (kg)
  • \\(m\\): Particle mass (kg)
  • \\(r\\): Distance (m)

Example Calculation

Example: Harmonic Potential, \\(k = 1 \, \text{N/m}, T = 300 \, \text{K}\\)

\\[ \langle T \rangle = \frac{3}{2} k_B T = \frac{3}{2} \times 1.380649 \times 10^{-23} \times 300 \approx 6.212921 \times 10^{-21} \, \text{J} \\] \\[ \langle V \rangle = \langle T \rangle \approx 6.212921 \times 10^{-21} \, \text{J} \\]

Result: \\(\langle T \rangle \approx 6.212921 \times 10^{-21} \, \text{J}, \langle V \rangle \approx 6.212921 \times 10^{-21} \, \text{J}\\).

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators