google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Thermal Radiation Spectrum Plotter

Thermal Radiation Spectrum Plotter visualizes blackbody radiance vs. wavelength or frequency at given T, using relations like (∂T/∂V)_S.

Thermal Radiation Overview

Planck’s law describes blackbody spectral radiance:

\\[ B(\lambda, T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/(\lambda k T)} – 1} \\]

or in frequency:

\\[ B(\nu, T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/(k T)} – 1} \\]

Key properties:

  • Radiation pressure: \\( P = \frac{1}{3} u \\), where \\( u = \frac{4\sigma T^4}{c} \\)
  • Stefan-Boltzmann constant: \\(\sigma = \frac{2\pi^5 k^4}{15 h^3 c^2}\\)

Maxwell relation for internal energy (\\(U\\)):

\\[ \left( \frac{\partial T}{\partial V} \right)_S = -\left( \frac{\partial P}{\partial S} \right)_V \\]

For blackbody radiation: \\( P = \frac{1}{3} a T^4 \\), where \\( a = \frac{4\sigma}{c} \\)

Example Calculation

Example: Blackbody at \\(T = 5800 \, \text{K}, \lambda = 500 \, \text{nm}\\)

Differential: \\( dU = T dS – P dV \\)

Maxwell Relation: \\(\left( \frac{\partial T}{\partial V} \right)_S = -\left( \frac{\partial P}{\partial S} \right)_V\\)

Radiance: \\( B(\lambda, T) \approx 1.41 \times 10^7 \, \text{W/(m}^2 \cdot \text{sr} \cdot \text{nm)} \\)

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators