Tidal Force on Satellites Calculator
Tidal Force on Satellites Calculator computes tidal force on a satellite, using differential gravity from a celestial body based on distance, size, and masses.
Formulas Used in Tidal Force on Satellites Calculator
The calculator uses the following formulas to estimate tidal forces:
Gravitational Acceleration:
\\[ a(r) = \frac{G M}{r^2} \\]Tidal Acceleration:
\\[ a_{\text{tidal}} = \frac{2 G M \Delta r}{r^3} \\]Tidal Force:
\\[ F_{\text{tidal}} = m \cdot a_{\text{tidal}} = m \cdot \frac{2 G M \Delta r}{r^3} \\]Where:
- \\( a(r) \\): Gravitational acceleration (m/s²)
- \\( G \\): Gravitational constant (\\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \\))
- \\( M \\): Mass of celestial body (kg)
- \\( r \\): Distance to celestial body (m)
- \\( a_{\text{tidal}} \\): Tidal acceleration (m/s²)
- \\( \Delta r \\): Satellite size (radial extent, m)
- \\( F_{\text{tidal}} \\): Tidal force (N)
- \\( m \\): Satellite mass (kg)
Example Calculations
Example 1: LEO Satellite near Earth
Input: Body Mass = \\( 5.972 \times 10^{24} \\) kg, Distance = \\( 6.771 \times 10^6 \\) m, Satellite Size = 2 m, Satellite Mass = 1000 kg
Result: Gravitational Acceleration = 8.69 m/s², Tidal Acceleration = \\( 5.13 \times 10^{-6} \\) m/s², Tidal Force = 0.00513 N
Example 2: Geostationary Satellite near Earth
Input: Body Mass = \\( 5.972 \times 10^{24} \\) kg, Distance = \\( 4.2164 \times 10^7 \\) m, Satellite Size = 5 m, Satellite Mass = 2000 kg
Result: Gravitational Acceleration = 0.224 m/s², Tidal Acceleration = \\( 5.33 \times 10^{-8} \\) m/s², Tidal Force = 0.000107 N
Example 3: Satellite near Moon
Input: Body Mass = \\( 7.342 \times 10^{22} \\) kg, Distance = \\( 2.738 \times 10^6 \\) m, Satellite Size = 1 m, Satellite Mass = 500 kg
Result: Gravitational Acceleration = 0.653 m/s², Tidal Acceleration = \\( 4.77 \times 10^{-6} \\) m/s², Tidal Force = 0.00239 N