google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Tidal Force on Satellites Calculator

Tidal Force on Satellites Calculator computes tidal force on a satellite, using differential gravity from a celestial body based on distance, size, and masses.

Formulas Used in Tidal Force on Satellites Calculator

The calculator uses the following formulas to estimate tidal forces:

Gravitational Acceleration:

\\[ a(r) = \frac{G M}{r^2} \\]

Tidal Acceleration:

\\[ a_{\text{tidal}} = \frac{2 G M \Delta r}{r^3} \\]

Tidal Force:

\\[ F_{\text{tidal}} = m \cdot a_{\text{tidal}} = m \cdot \frac{2 G M \Delta r}{r^3} \\]

Where:

  • \\( a(r) \\): Gravitational acceleration (m/s²)
  • \\( G \\): Gravitational constant (\\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \\))
  • \\( M \\): Mass of celestial body (kg)
  • \\( r \\): Distance to celestial body (m)
  • \\( a_{\text{tidal}} \\): Tidal acceleration (m/s²)
  • \\( \Delta r \\): Satellite size (radial extent, m)
  • \\( F_{\text{tidal}} \\): Tidal force (N)
  • \\( m \\): Satellite mass (kg)

Example Calculations

Example 1: LEO Satellite near Earth

Input: Body Mass = \\( 5.972 \times 10^{24} \\) kg, Distance = \\( 6.771 \times 10^6 \\) m, Satellite Size = 2 m, Satellite Mass = 1000 kg

\\[ a(r) = \frac{6.67430 \times 10^{-11} \cdot 5.972 \times 10^{24}}{(6.771 \times 10^6)^2} \approx 8.69 \ \text{m/s}^2 \\] \\[ a_{\text{tidal}} = \frac{2 \cdot 6.67430 \times 10^{-11} \cdot 5.972 \times 10^{24} \cdot 2}{(6.771 \times 10^6)^3} \approx 5.13 \times 10^{-6} \ \text{m/s}^2 \\] \\[ F_{\text{tidal}} = 1000 \cdot 5.13 \times 10^{-6} \approx 0.00513 \ \text{N} \\]

Result: Gravitational Acceleration = 8.69 m/s², Tidal Acceleration = \\( 5.13 \times 10^{-6} \\) m/s², Tidal Force = 0.00513 N

Example 2: Geostationary Satellite near Earth

Input: Body Mass = \\( 5.972 \times 10^{24} \\) kg, Distance = \\( 4.2164 \times 10^7 \\) m, Satellite Size = 5 m, Satellite Mass = 2000 kg

\\[ a(r) = \frac{6.67430 \times 10^{-11} \cdot 5.972 \times 10^{24}}{(4.2164 \times 10^7)^2} \approx 0.224 \ \text{m/s}^2 \\] \\[ a_{\text{tidal}} = \frac{2 \cdot 6.67430 \times 10^{-11} \cdot 5.972 \times 10^{24} \cdot 5}{(4.2164 \times 10^7)^3} \approx 5.33 \times 10^{-8} \ \text{m/s}^2 \\] \\[ F_{\text{tidal}} = 2000 \cdot 5.33 \times 10^{-8} \approx 0.000107 \ \text{N} \\]

Result: Gravitational Acceleration = 0.224 m/s², Tidal Acceleration = \\( 5.33 \times 10^{-8} \\) m/s², Tidal Force = 0.000107 N

Example 3: Satellite near Moon

Input: Body Mass = \\( 7.342 \times 10^{22} \\) kg, Distance = \\( 2.738 \times 10^6 \\) m, Satellite Size = 1 m, Satellite Mass = 500 kg

\\[ a(r) = \frac{6.67430 \times 10^{-11} \cdot 7.342 \times 10^{22}}{(2.738 \times 10^6)^2} \approx 0.653 \ \text{m/s}^2 \\] \\[ a_{\text{tidal}} = \frac{2 \cdot 6.67430 \times 10^{-11} \cdot 7.342 \times 10^{22} \cdot 1}{(2.738 \times 10^6)^3} \approx 4.77 \times 10^{-6} \ \text{m/s}^2 \\] \\[ F_{\text{tidal}} = 500 \cdot 4.77 \times 10^{-6} \approx 0.00239 \ \text{N} \\]

Result: Gravitational Acceleration = 0.653 m/s², Tidal Acceleration = \\( 4.77 \times 10^{-6} \\) m/s², Tidal Force = 0.00239 N

Related To Tidal Force on Satellites Calculator

  1. Tidal Force on Satellites Calculator
  2. Gravitational Wave Signal Strength Calculator
  3. Asteroid Impact Energy Calculator
  4. Light Travel Time Calculator
  5. Black Hole Event Horizon Radius Calculator
  6. Astronomy