google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Time-Dependent Schrödinger Solver

Time-Dependent Schrödinger Solver computes wavefunction evolution in a 1D potential, aiding quantum dynamics and quantum computing studies.

Formulas Used in Time-Dependent Schrödinger Solver

The calculator solves the time-dependent Schrödinger equation numerically:

Time-Dependent Schrödinger Equation:

\\[ i \hbar \frac{\partial \psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x,t)}{\partial x^2} + V(x) \psi(x,t) \\]

Initial Wavefunction (Gaussian):

\\[ \psi(x,0) = \left( \frac{2}{\pi \sigma^2} \right)^{1/4} e^{-(x-x_0)^2 / \sigma^2} e^{i k_0 x} \\]

Harmonic Oscillator Potential:

\\[ V(x) = \frac{1}{2} m \omega^2 x^2 \\]

Numerical Time Evolution (Euler):

\\[ \psi(x, t + \Delta t) \approx \psi(x, t) – \frac{i \Delta t}{\hbar} \left[ -\frac{\hbar^2}{2m} \frac{\psi(x + \Delta x, t) – 2\psi(x, t) + \psi(x – \Delta x, t)}{\Delta x^2} + V(x) \psi(x, t) \right] \\]

Probability Density:

\\[ |\psi(x,t)|^2 \\]

Where:

  • \\( \psi(x,t) \\): Wavefunction
  • \\( m \\): Particle mass (kg)
  • \\( x_0 \\): Initial position (nm)
  • \\( \sigma \\): Gaussian width (nm)
  • \\( k_0 \\): Initial wavevector (nm\\(^{-1}\\))
  • \\( \omega \\): Angular frequency (rad/s, 0 for free particle)
  • \\( t \\): Evolution time (fs)
  • \\( \hbar \\): Reduced Planck’s constant (\\( 1.0545718 \times 10^{-34} \, \text{J·s} \\))

Example Calculations

Example 1: Free Particle Wavepacket Spreading

Input: m = 9.109e-31 kg, x_0 = 0 nm, σ = 1 nm, k_0 = 1 nm\\(^{-1}\\), ω = 0 rad/s, t = 100 fs

Result: Wavepacket spreads; peak probability density decreases, normalization ~1.

Example 2: Harmonic Oscillator, Stationary Gaussian

Input: m = 9.109e-31 kg, x_0 = 0 nm, σ = 1 nm, k_0 = 0 nm\\(^{-1}\\), ω = 1e14 rad/s, t = 100 fs

Result: Oscillatory behavior; probability density remains centered, normalization ~1.

Example 3: Harmonic Oscillator, Moving Wavepacket

Input: m = 9.109e-31 kg, x_0 = 1 nm, σ = 1 nm, k_0 = 1 nm\\(^{-1}\\), ω = 1e14 rad/s, t = 100 fs

Result: Wavepacket oscillates with potential; normalization ~1.

“`

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators