google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Variational Method Eigenvalue Calculator 

Variational Method Eigenvalue Calculator

Variational Method Eigenvalue Calculator computes approximate eigenvalues and eigenfunctions for the 1D Schrödinger equation \\( -\frac{\hbar^2}{2m} \frac{d^2 \psi}{dx^2} + V(x) \psi = E \psi \\) with boundary conditions \\( \psi(0) = \psi(L) = 0 \\), using the variational method with a trial wave function. Results are visualized with p5.js and steps are displayed with MathJax.

Variational Method Eigenvalue Calculator

This calculator approximates the ground state eigenvalue and eigenfunction for the 1D Schrödinger equation \\( -\frac{\hbar^2}{2m} \frac{d^2 \psi}{dx^2} + V(x) \psi = E \psi \\) with boundary conditions \\( \psi(0) = \psi(L) = 0 \\), using the variational method. Input the domain length (\\( L \\)), potential function (\\( V(x) \\)), trial wave function (\\( \psi(x) \\)), Planck’s constant (\\( \hbar \\)), mass (\\( m \\)), and grid points (\\( M \\)). The eigenvalue is computed as \\( E = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} \\), visualized with p5.js, and steps are shown with MathJax. Results can be shared or embedded.

Example 1: Particle in a Box

Parameters: \\( L = 1 \\), \\( V(x) = 0 \\), \\( \psi(x) = x(1-x) \\), \\( \hbar = 1 \\), \\( m = 1 \\), \\( M = 100 \\).
Step 1: Compute expectation value of Hamiltonian.
Step 2: Normalize trial wave function.
Result: Approximate eigenvalue close to \\( \frac{\pi^2}{2} \approx 4.9348 \\).

Example 2: Harmonic Oscillator

Parameters: \\( L = 2 \\), \\( V(x) = x^2 \\), \\( \psi(x) = e^{-x^2} \\), \\( \hbar = 1 \\), \\( m = 1 \\), \\( M = 100 \\).
Approximates the ground state energy of a harmonic oscillator.

Example 3: Linear Potential

Parameters: \\( L = 1 \\), \\( V(x) = x \\), \\( \psi(x) = x(1-x) \\), \\( \hbar = 1 \\), \\( m = 1 \\), \\( M = 100 \\).
Tests a linear potential with a simple trial function.

Example 4: Higher Mass

Parameters: \\( L = 1 \\), \\( V(x) = 0 \\), \\( \psi(x) = x(1-x) \\), \\( \hbar = 1 \\), \\( m = 2 \\), \\( M = 100 \\).
Higher mass reduces the kinetic energy contribution.

Example 5: Different Trial Function

Parameters: \\( L = 1 \\), \\( V(x) = 0 \\), \\( \psi(x) = \sin(\pi x) \\), \\( \hbar = 1 \\), \\( m = 1 \\), \\( M = 100 \\).
Exact eigenfunction yields exact eigenvalue \\( \frac{\pi^2}{2} \\).

Related Calculators

  1. Quadratic Residue Checker
  2. Diophantine Equation Solver
  3. Modular Exponentiation Solver
  4. Stokes Flow Simulator
  5. Determinant Calculator
  6. Mid-Point Calculator
  7. More Math Calculators